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Abstract
This thesis is about finding expressive

representations about the personal mobility

of a user, intending the term expressive both

from the point of view of information and of

user-centred design, with the aim of allowing

people to access their data, understand it and

gain awareness about their behaviours,

starting from the assumption that

expressiveness is not necessarily related to

complex systems.

We embrace the individual perspective on

movement data and we present a new

methodology to represent and study mobility

through the aid of tree-shaped structures. We

present as a complement a suite of tools

named Treemob, which gathers all the

methods and classes to perform an analysis,

in Python language, and an example of

analysis that could be conducted starting

from tree-shaped personal mobility data. The

proposed experiments can be viewed as a

boilerplate for new and deeper studies trying

to answer different questions and to explore

different contexts.

“[…]We must maintain a humanist view of data,

relying on our own faculties to tell a story. Second,

to improve the discourse surrounding data, we

must disavow our fascination with the intricate

and complicated by learning how to throw things

out.

To provide some background, my own work is

focused on visualization of complex data sets,

whether the human genome, millions of words of

text, or truly important things like showing which

American baseball teams are over-paying for star

players. But my assumption is that whether you

think it's relevant or not, working with ever-larger

data sets will remain the domain of design for

years to come, as we continue to be inundated

with more sources of information, and

proportionally fewer ways to handle and

understand them.”

Ben Fry (2009)1
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In our more and more tracked life, we

produce an enormous amount of personal

data representing our daily activities and

behaviours, including information about the

way we move in the space we live2. This data

includes spatio-temporal information, like

the locations we traverse, and the velocity

and duration of the travel.

The quantity of the information we produce

every day is huge as well as raw and needs

some kind of organisation to be useful, but

after some preprocessing it starts to reveal

how many kinds of knowledge we can extract

from it, mainly if we think about Personal

Data Analytics3.

An effective Personal Mobility Profile should

organise information in such a way that is

feasible for the computational analysis but at

the same time that is accessible and

understandable for the user.

Global Positioning System (GPS) and Global

System for Mobile Communications (GSM)²

data creates the opportunity to study human

and non-human behaviours in a spatio-

temporal view. This data has been already

used to study traffic patterns, as well as

urban planning, sustainable mobility, the

design of the public transportation systems

or even the mining of attractive locations.

For example, Andrienko et. al. (2011)4 propose

a methodology that exploits visual analytics

and clustering techniques to discover the

relevant geographic places of a territory by

extracting the most important events in a

large set of trajectories traversing that zone.

Another study, by Larcom et. al. (2017)5,

one by Pappalardo et. al. (2015)¹⁰, which

revealed the presence of two main classes of

travellers: the returners and the explorers.

The former group tends to move in a limited

set of locations, that by consequence occur

very frequently; the latter instead is

characterised by the impossibility to be

reduced to few locations. The importance of

this paper is also due to its interconnection

with social studies, since it discusses how

these two classes differently contribute to the

spread of information, social interactions and

diseases.

Another genre of contribution is from

Trasarti et. al. (2011)¹¹, where the focus is on

solving practical problems like carpooling

recommendation through the analysis of the

personal mobility agenda of each user and

trying to cluster similar routines to be

matched.

Individual models also open new possibilities

in terms of user-centred data, since they are

suitable to be used in a shared network

where each single person can choose how

much and which kind of data to make public.

This is fundamental since individual patterns

alone are often insufficient for the analysis:

the comparison between individual data is

fundamental, as well as the combination of

personal models together with global models.

Another important aspect to be considered is

the sensitivity of the movement data: the

analyst should always be aware of the ethical

issues which could emerge while working

with very personal information. In order to

preserve the user’s privacy rights, a possible

solution could be an infrastructure which

focuses on observing the travellers’ search for

a new optimal path after their usual route

becomes impassable due to a strike.

These two examples show two of the many

different kinds of information we can extract

from mobility data: this field combines the

approaches of sociological studies with more

quantitative methods, and tries to discover

mathematical patterns in human behaviour.

Mobility data is a powerful tool to understand

new facets of human nature and to unveil

collective mechanisms at different scales, and

will be fundamental to develop environment-

friendly solutions in the next few years. A

virtuous example of this kind of project is

Berlin Autofrei (car-free)6, which aims to

enlarge the pedestrian area of the city and to

reduce by consequence the usage of the

individual motorised transport. To make

similar initiatives feasible, an a-priori

planning of the population’s mobility needs is

necessary, in order to offer adequate

alternative public transport services or

parallel infrastructures (for example cycle

paths) in replacement of the existing ones.

While in the beginning this mobility data

analysis was predominantly focused on

global mobility, and by consequence

considered the trajectories of many users at a

time7,8, recent studies have highlighted the

potentiality of individual models9; in fact,

using a microscope view on the user's digital

traces allows the scientists to detect

systematic behaviours of the single and

highlight patterns that are invisible in a

collective perspective. One of the most

representative studies that used the

individual mobility network studies is the

allows the user to view their data and choose

what to share about it. This infrastructure,

called a Personal Mobility Profile³, not only

improves privacy but is also able to trigger

the user’s awareness about their behaviours,

that, in the case of mobility, could also mean

to build more consciousness about the user’s

behaviours relative to the pollution they

produce and other social themes the

researchers want to point the attention to.

!

The aim of this thesis is to find an efficient

and semantically expressive representation of

personal mobility data exploiting tree

structures, taking de facto a quite unexplored

route; in fact, a large number of studies3, 15, 16

in this field use network structures to

perform the analysis, because they well

represent spatial relations, and they can also

be adapted to store temporal data.

We also complement the analytical work with

the development of a visual analytics tool we

appositely designed and realised to

understand and explain the results obtained,

and with a Python module containing all the

methods we implemented to generate the

mobility tree shaped data.

The final objective is to perform

unsupervised learning on the generated trees

to find different kinds of mobility habits, and

to compare the results obtained observing

two different cities, Pisa and Florence.

To do so, we defined a variation of prefix tree

containing the trajectories of the user and we

rooted it under the most frequent location

10 11



detected. Then, we chose as a dissimilarity

measure the unordered tree edit distance, a

particular type of tree edit distance that

works with trees whose branches are not

ordered from left to right. Once having

computed the distance matrix, we tried

different clustering algorithms both on the

tree data directly and on their vectorial

representation which describes some basic

structural attributes.

Contrary to expectations, we did not observe

a set of different types of user, but rather a

quite dense and unique group, accompanied

with a small fraction of noise, no matter the

clustering algorithm, nor the input data type,

or the cleaning pipeline.

This work is organised in the following

structure: we first describe, in the

Background section, the main theoretical

concepts related to mobility data, trees and

graphs, and visual analytics; once these ideas

are exposed, in the Related Work we

overview a selection of researches that we

found useful, or that well explain the field we

are operating in; then, in the Problem

Formulation and in the Methodology sections

we explain the theoretical and operative steps

and choices we made to organise the data

and to visualise them; after that, in

Experiments, we explain which kind of

dataset we used, the cleaning pipeline we

followed, and of course the results we

obtained. The Conclusion, lastly, synthesises

the major achievements of this work.

view, the written communication is a form of

communication in which the contextualised

integration is based on the majority of cases on a

visual frame and on visual analogies¹³.

Combining the potentialities of typographical

and visual writing we hope to offer a clear

and maybe also pleasant way to access the

information we want to communicate,

according to the principle of synsemia, the

conscious display of the elements in the space in

order to communicate through the spatial

relations between them¹⁴.

1.1 Note to the visual
apparat

One of our priorities during our work has

been to make the content of this thesis as

much accessible as possible: the editorial

product we designed tries to be organically

organised and to provide information at

different levels of complexity and

technicality, to let all kinds of readers to

grasp the main concepts behind this work.

For this reason, we believed adding some

graphic and illustrated support could make

the addressed topics more interesting and

engaging. The role of the visual content in

this thesis is then not only demonstrative (for

example, used for showing the results) but

also narrative, so as to tell the whole

theoretical process that brought to the

results. We strongly believe in the central role

of the image in scientific communication and

that illustrations can bring an important

contribution, far from being a mere esthetical

complement, but rather being an active part

of the development of the discourse. The

prejudice which sees the usage of images as

less noble with respect to what is commonly

defined as writing is as deep-rooted as it is

unfounded¹².

We use visual language more than we think,

because it is often more functional that plain

text; and the visual systems we build are

themselves a form of writing, with different

functions from typographical writing, but not for

that should be considered of less importance.

Visual systems are often able to break the plain

text limitations to convey messages in a

nonlinear yet more direct way. As well explained

by the semiologist Roy Harris in his work

Rethinking Writing: from an integrational point of

12 13
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In this section we introduce the theoretical

elements related to mobility data analysis.

2.1 Basic mobility concepts
2.1.1 Mobility data structure
The core element constituting a mobility

dataset is the trajectory. A trajectory is an

ordered sequence of points traversed by the

user in a specific moment17.

Formally we define a trajectory as a series of

spatio-temporal points ts = <p1, …, pn> each of

them in the form of a triple pi = (loni, lati, ti)

where loni and lati are respectively the

longitude and the latitude of the location

traversed, while ti is the timestamp of the

event. As already said, a trajectory is

chronologically ordered, so ∀ 1 ≤ i ≤ n: ts� <
ts�+1; so, the ith point of the trajectory ts is

identificated as ts[i], while its spatio-

temporal coordinates are ts[i].lon, ts[i].lat, and

ts[i].t.

A mobility dataset is then a set of trajectories

T = <ti, …, tm>.

2.1.2 Personal and collective
mobility data

We talk about collective mobility data when

the trajectories of multiple users are

considered simultaneously to build a single

model. This could be useful to study cities'

viability, for example highlighting the areas

and the temporal intervals more subject to

flocks or to incidents. Global pattern mining

is based on the assumption that studying

users’ behaviours in mass can effectively

produce well-defined classes sufficiently

accurate to represent a mobility environment.

However, global patterns are not always able

to correctly generalise such complex systems

like human movements, because of the large

variety of behaviours that can occur.

To overcome this issue, personal models

were ideated. There are many kinds of

personal models each responding to specific

research needs. Trasarti et al. (2011)18 propose

a mobility profile extraction pipeline aiming

to detect the habits of the user through

trajectory pattern extraction. The idea is to

aggregate trajectories that are temporally and

spatially similar by setting distance

thresholds in both the dimensions, and to

remove unusual paths. Once these trip groups

are extracted, their medoid is computed to

obtain a prototype of each habitudinary

travel; the set of these routines, then,

represents the mobility profile.

Another way to extract the personal mobility

model is the individual mobility network

(IMN)17; the IMN is obtained by organising in

a directed graph the regular locations LR
u , the

irregular locations Li
u , and the movements Mu

of a user, obtaining a network Gu=(V, E)

consisting in the set of vertices V = LR
u � Li

u and

the edges E = Mu. The graph will consist in a

set of trajectories linking regular locations

that correspond to the abstraction of the

user’s habits, and in a set of noise nodes and

edges that are their infrequent travels.

Finally, there exist combined models, whose

aim is to exploit the strengths of both the

approaches by creating hybrid models.

16 17

Fig. 1 (right): An illustrated representation of
mobility data, taking into consideration a
trajectory.



2.2 Trees and graphs
One way to represent and display a set T of

trajectories is using a graph. A mobility graph

is a directed graph consisting in a set of

nodes N = <n1, …, nn> representing the

locations appearing in T, and a set of edges E

= <e1, …, en> where each ei = <na, nb>

corresponds to a path from location a to

location b. The mobility graphs are often

weighted, meaning that to each node and to

each edge is associated a weight value

corresponding for example to the frequency

of its appearance.

2.2.1 Prefix trees
A prefix tree is a data structure predominantly

used in information retrieval and in

particular for text data because of its capacity

to condense huge amounts of data in a

simpler structure.

A prefix tree is a variation of a hash tree and

can be formalised as a triple PT = (V, E, root),

where V is the set of nodes (locations), E is

the set of edges connecting nodes (path from

one location to another) and root is the

virtual root node on the top of the tree, which

does not correspond to any location (root �

V). The main characteristic of a prefix tree is

that for each node, the set of its siblings does

not contain duplicates: this means that all the

sequences with a common prefix are grouped

in one single branch of the tree; by

consequence, two strings s1 = <A, B, D, E> and

s2 = [A, B, D, F, G] will share the same branch

A → B → D; at this point, there will be a split

to E and another to F and then G.

2.2.2 Spanning graphs
We put the spanning graphs under this

dogmas but rather some principles and good

practices.

The artisanality of this discipline should not

be considered a defect but rather an

opportunity to mould the information in such

a way that it is understandable by the target

we are referring to, and so that the visual

output immediately communicates the

various shades of the data we are studying.

From our point of view, data visualisation is

fundamental to make the scientific

knowledge accessible and to help the

divulgation outside the research field.

Intuitive tools can help to build trust in the

technology.

In the following paragraphs, we will review

the most important theoretical contributions

behind data visualisation, so that the reader

can better understand the visual choices we

did while designing the visual output of this

thesis.

Jacques Bertin is considered one of the

fathers of data visualisation thanks to his

work Sémiologie Graphique (1967)19, where

he rationalised the elements used to

represent statistical information mainly in

cartographic applications. Bertin defined the

so-called visual variables and described how

each element of a representation is more or

less suitable to convey a certain type of

information. These variables are: the position

of the element in space, the shape, the size,

the value, the colour, the orientation and the

texture. Their combination constitutes a

complex visual code able to transmit multiple

information in a relatively small amount of

space. For position is intended the

section because as explained in the next

chapter this structure was then converted

into a tree-shaped one.

A spanning graph is a subgraph G’ of a

generally edge-weighted graph G which

preserves the length of shortest paths in G, up

to some error distortion. A spanner is an

uncycled graph obtained from a graph with

cycles by extracting the optimal paths

connecting each node, and by consequence

providing a simplification of the original

graph. In general, we refer to minimum

spanning graphs, because we aim to find the

shortest or cheapest path to reach a location

from one another. In the case of personal

mobility data approximation, on the contrary,

we could be interested in representing the

most frequent connections, using by

consequence a maximum spanning graph. In

practice, the method of extraction remains

invariant but we assign weights to paths

corresponding to the inverse of their

frequency, and so consider less optimal the

rarest paths.

2.3 Basic data
visualisation concepts

Since we consider the visual output of this

thesis fundamental to understand and

appreciate the concepts theorised, we

dedicate this section to describe the

principles behind the data visualisation

discipline.

Data visualisation is not an exact science:

many studies have been proposed in order to

discover the exact mechanisms behind

human visual perception and information

encoding, and the result was not a set of

coordinates of an element in the page, and

for size its length or area; the shape is the

form given to the element, and could be quite

variable; for value we intend its darkness

while the colour refers to the hue; finally, the

orientation is the amount of change in the

alignment of the element, while the texture is

the variation in grain of its fill. The core point

of Bertin is that each of these variables can be

exploited to represent numerical values, so

for example a longer bar in a chart

corresponds to a greater value.

Another important figure in the data

visualisation field is Edward Tufte. In his

work The Visual Display of Quantitative

Information (1983)20 Tufte defines the data-

to-ink ratio, arguing that a good

representation minimises the amount of ink

used to show a particular data. The

proportion is computed by comparing the

total amount of ink used to print the graph

and the quantity actually useful to represent

data, so the objective, according to Tufte, is to

remove all kinds of redundancy and of non-

data elements. This is of course a radical

approach to information visualisation and

there is no evidence that minimalist plots are

more understandable nor that are preferred21.

For example, Bateman et. al. (2010)22 have

pointed out that a certain amount of

decoration and of redundancy helps to

memorise the information in a chart, and the

field of data journalism often takes advantage

of the combination between illustration and

diagrams23.

What is important about Tufte’s philosophy

is the will to convey the information in the

cleanest way and by consequence to be as

18 19



scientific as possible. Nowadays, we are

conscious that biases also emerge before the

data representation, in the way we classify

the records and we organise them. Also, a

small level of redundancy in the visualisation

could help to read it more easily: as humans,

we do not perceive in a mechanical way, so

the repetition of the same concept in

different ways makes us faster in

understanding a concept. For a complete

review about the subjectiveness of scientific

images see Objectivity, by Daston and Galison

(2007)24. However, we recognise to Tufte the

will to not interfere in the representation

with useless elements, that could become

misleading.

Ceneda et al. (2020)25 well explain how

difficult and artisanal the process of

designing a visual analytics tool is, pointing

out that guidance (the process of easing the

information extraction from complex data) is

context dependent. Also, they see visual

analytics as a method to fill knowledge gaps,

that, they discuss, can arise from many

reasons. Another important point stated by

the authors is that data visualisation is

almost the last step of the designing process:

first, we need to understand the analysis

goals, figure out what kinds of knowledge

gaps there could occur, and then iteratively

prototype and receive feedback from the

users. This means that one solution could

work in a specific case but could be unhelpful

in similar situations.

20 21

Bertin’s visual variables

Position
x, y location

Size
length, area, width or height

Shape
there are infinite shapes

Value
light to dark

Colour
hue

Orientation
the aligment / rotation

Texture
the grain

Fig. 2 (left): Bertin’s visual variables.
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In this section we review the literature about

our main areas of interest, that is mobility

data representation and analysis, and

mobility data visualisation.

3.1 Mobility data shaping
and analysis

Rinzivillo et al. (2014)26 have studied a

cascading classification approach to detect

salient activities from individual mobility

networks. The main idea of this work is to

extract semantic information from the

Individual Mobility Network of the user

starting from an annotated dataset of GPS

tracked activities through a procedure called

Activity-Based Cascade (ABC). The ABC

consists in splitting the multi-class

classification into a set of binary classifiers

organised in a random forest which

progressively determine which type of

activity a set of data represents. Beside being

interesting to perform supervised learning on

mobility data, we found useful to see how the

feature selection process has been resolved:

the authors, in fact, explain they considered

both the so-called trip features and the

network features; the former are relative to the

temporal and topological characteristics of a

travel, while the other basically inherited

from the network analysis field.

Guidotti et al. (2017)27 propose to represent

personal mobility through an agenda that

summarises the movement habits of the user

during a cyclic period, like a week. This is an

interesting approach to predict the user’s

location on a specific day at a given time.

The personal mobility agenda is in fact

defined on a certain time granularity (τ) and

representations that preserve the spatio-

temporal characteristics of the trajectories,

simplify the mobility data structure, and hide

sensitive data through the usage of laplacian

noise. This paper was crucial for this thesis to

figure out how to arrange trajectories in a

simple and standard architecture.

3.2 Visual analytics for
mobility data

In this section we present some examples of

visual analytics applications that we find

relevant for various reasons.

For the VAST 2013 conference, Andrienko et

al.30 propose a visual analytics methodology

for analysing movement behaviours of

groups of users. The resulting interactive tool

is extremely complete in terms of analysis

possibilities but at the cost of being quite

complex. The first concept introduced in their

work is the mapping of the movements not

only on a geographical basis (in two

dimensions) but also in a space-time cube,

exploiting the third dimension to represent

movements during time. The next step is to

respect to a specific observed time interval,

and it consists in a unique trajectory for the

whole day, with a location at each clock tick τ.

Obviously, it is not always possible to get the

user’s location at the a τ: some kind of

interpolation is needed.

To reproduce the personal mobility agenda,

the authors extract the stops using the

algorithm TOSCA28, the locations, and the

movements of the user, and from them create

a mobility network as a directed graph,

where the nodes correspond to the locations

and the links represent the movements.

Then, the regular locations are extracted, and

by consequence a cleaner movement dataset

is obtained and an initial model can be

obtained. The paper presents a procedure

named RAMA (Routinary Actions Mobility

Agenda) to extract the agenda using that

model: for convention, the agenda starts at

midnight, and the initial location is the most

likely at that time given the observed data.

Then, for each interval �, we need to add a

simulated position checking if the user is

generally moving at that time. If this is the

case, the last stop is considered as the current

location, otherwise we need to interpolate it

with some kind of function.

The interesting aspect of this work is the aim

to create a discrete and understandable

model, simplifying the structure of the

mobility network and adding the temporal

dimension.

The last work we want to report is from Zhao

et al. (2020)29 and is about privacy

preservation of trajectory data. The authors

use differential privacy combined with data

arranged into prefix trees to create

transform the first two dimensions into a

more abstract space which encodes the

information about the direction of the

movement, rather than the exact

geographical coordinates. The resulting

projection allows the analyst to study

individual trajectories or groups of similar

trajectories. The tool also provides for each

user the information about how it fits in the

group they have been assigned, by showing

the density of their positions with respect to

the group, or also the participation of the

same user to different clusters. This tool is an

example of how many different kinds of

analysis perspectives are available starting

from the same dataset, and that geospatial

representation is not the only solution. The

main problem with the tool is the amount of

variables it has to handle, and the consequent

complexity of the graphical user interface:

the visual outputs often need an extensive

explanation and could be hard to use outside

the research field, for example for

communicating the results of a study to the

institutions or to a larger public.

Another work from Andrienko et al. (2021)31

we selected is a very abstract representation

aiming to hide the most sensitive

22 23

Fig. 3: Some user’s trajectories in the space-
time cube. Andrienko et. al. (2013)

Fig. 4: the trajectories represented as
variation in the movement’s direction.
Andrienko et. al. (2013)



information which could be extracted from

mobility data. In fact, as they discuss: [it is

easy to identify a] person’s home and workplaces

and other frequently visited places by

interpreting spatial and temporal patterns of the

person’s moves and stops from the positions of

the human common sense. The authors

propose a couple of two-dimensional

histograms, divided in cells, one for the

detected home-location and the other for the

secondary location (for example, the

workplace), whose rows correspond to the

hours in a day and the columns represent the

seven days of a week; the more a cell is filled,

the higher the probability for the user to be in

the location in that time. The simplicity and

intuitivity of the visualisation and its

independence from the geographical space are

the strength of the output. Its only issue is the

difficulty of comparison of the probabilities,

since their value is represented through the size

of a square area, that is not easily readable for

humans, and since each square is centred in the

cell, making even more difficult to discern the

quantitative difference. However, this

visualisation is an excellent qualitative starting

point for more in-depth diagrams, and it is

easily explainable to the general public.

simultaneously, and to visually discover the

game patterns. A simple interface allows

customising the visualisation’s variables; also

in this case the output is highly qualitative,

but at the same time rapidly understandable.

Possible implementations could be to use a

slider to visualise the progress of the action,

rather than an animation, and maybe to

provide some statistics, like for example the

median distance of the incoming or

outcoming balls; in addition, the interface

could be improved to filter data, rather than

only to change visual variables.

A totally different paradigm is proposed by

Douieb (2021)32 to represent a different kind

of mobility data: football passes in the play

area. In this case, the focus is completely on

the locations, while who hit or received the

ball remains unspecified. The result is a flow

visualisation which allows the user to focus

on a specific coordinate or on a specific axis,

or to simply look at all the passes

24 25

Fig. 5: Frequently visited places of a user
plotted on a temporal map, where the rows
correspond to the hours of a day, while the
columns to the days in a week.
Andrienko et. al. (2021)

Figg. 6 (top), 7 (bottom): All the ball passes
arriving and starting from a [x, y] point or
from a specific x value in the field.
Douieb (2021)



4. Problem
formulation



In this section, we describe how we can

transform the set of trajectories of the user u

Mu = <t0, …, tn> into a tree T = {N, E}, where N =

<n0, …, np> is the set of nodes corresponding

to the traversed locations, and E = <e0, …, em>

is the set of edges connecting two nodes, so

that there is no cycle. We also explore how to

convert the personal data Mu into a unique

vector V and to transform a tree into a vector

V(T) describing its architecture.

4.1 Representing mobility
data through trees

In this section, we present the two data

structures we experimented with: prefix trees

and spanning trees.

4.1.1 Prefix trees
Mapping trajectories into a prefix tree is a

quite straight-forward process, since we treat

each point as the letter of a string. Since we

are considering similar trajectories beyond

their temporal appearance, we can simplify

each point of a trajectory to contain only

spatial data; in addition, to better represent

the same geographical places in the structure,

we assign to each tuple gi=(loni, lati) a unique

identifier j � J (a collection of geographical

points). So, the trajectory points previously

described as pi = (loni, lati, ti) are now

simplified as pi = ji . The resulting tree will be

composed by the nodes N = <n0, …, nn>, the

labels L = <l1, …, ln> assigned to each node,

and the edges E = <e0, …, em>. The nodes are

artificial structures associated with a unique

identifier, and contain the information of the

represented location in their label; the same

label value can be present in different nodes,

in various positions in the tree. For clarity, we

expose through an example the creation

inverse of their frequency, since light weights

are prioritised.

The resulting representation synthesises the

user’s mobility focusing on the connections

between each location. Contrary to the prefix

tree, in this structure there is a one-to-one

correspondence between nodes and

locations, giving place to a more condensed

representation. At the same time, if in the

prefix tree the chronological order of the

locations in the trajectories is respected, in

the case of the spanning tree we have an

important summarisation of the paths,

because we only keep the links with the best

fitness. As we will repeat in other

circumstances, we do not consider this

feature an issue, since the focus of this work

is on the shape of a person’s mobility, rather

than only on the sequences of places they

visit.

4.1.3 Two perspectives on the
same phenomenon

We saw two different approaches to

represent movements through trees; in the

next lines we describe the different details

they highlight. A prefix tree is more focused

on the ordered sequence of points traversed:

from its root, in fact, are generated the nodes

corresponding to the locations where,

according to the dataset, the user starts their

trips. Following a branch, all the nodes with

more than one successor represent possible

practicable routes given the previously visited

locations.

A spanning tree is instead a more abstract

representation of the user’s movements: its

branches, in fact, do not necessarily

process starting from a simple set of data. Let

D be the database of trajectories of a user U,

and be it equal to Du = { t0: < A, B, C >, t1: <A, B,

D >, t2: < A, E, F >, t3: < B, E, G>, t4: < B, A, G >, t5

: < C, A, B >}. The first step is to initialise the

virtual root of the tree as an empty node. The

siblings of root will be A, B and C, since these

are the starting locations of all the

trajectories. The node root → A will have B

and E as siblings, because these points can be

reached after having traversed the virtual

root and A; the siblings of B, instead, will be E

and A, while C will only have A as successor.

Note that in the siblings of root → A does not

appear G because this point is not directly

reachable from A as a starting trajectory

location.

We have obtained a compact yet powerful

representation of the user’s movements. One

of the aspects to be taken into account is how

the location information is decentralised

among the tree: many nodes correspond to

the same spot and each of them provides

insights about it according to a specific

pattern of movement.

4.1.2 Spanning tree
To map a trajectory dataset into a spanning

graph, we simply create a node for each

unique location L observed, because the same

location cannot occur more than once. Then,

using the Kruskal algorithm (but there are

many others available), we determine the

optimal edges according to the user’s

movement graph so that each point is

connected with the others, at least indirectly.

Since we are interested in the most frequent

paths, we use as a weighting function the

correspond to real trips but are a synthesis of

the user’s habits. This architecture tries to

organise hierarchically the mobility so that

more traversed routes are central, while the

other have a more accessory role.

4.2 Representing mobility
data through vectors

The second path we explored was to

represent the mobility data as vectors,

because such a representation is suitable for

a large number of analysis methods. We tried

to preserve the same principles we adopted

when creating mobility trees, so the will to

study the shape of the mobility, and to be as

indirectly related as possible to the

geographical coordinates information.

The theoretical basis for building mobility

vectorial representation has been the concept

of TF-IDF. The TF-IDF (Term Frequency -

Inverse Document Frequency) is a measure

primarily used in information retrieval and it

consists in the ratio between the probability

of one term in a document (TF) and the

logarithm of the total number of documents

divided by the number of documents where

the term appears (IDF). By analogy, in our

case the locations correspond to the words,

while the users are intended as the

documents.

The TF-IDF is useful to understand which

locations characterise one person’s mobility

respect to the others, because location

common for many users will get a low value.
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Fig. 8 (next two pages): How to build a
mobility prefix tree from trajectory data.





Another way to represent mobility data

through vectors we hypothesised was to

extract some features describing the mobility

trees and use them as features for

unsupervised learning. In the Methodology

section both methods are explained.
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Fig. 9 (left): How to build a mobility spanning
tree from trajectory data.



5. Methodology



In this section, we present the theorical and

technical solutions we ideated to transform

the already mentioned trees and vectors into

really semantically valuable representations.

In particular, the main question we have tried

to answer has been: what will be the role of

the root of a tree, and which kind of relations

are we trying to encode both in trees and

vectors?

5.1 Trajectory notation
In order to keep the data comprehensible

when organised in prefix trees, we added two

artificial points to each trajectory, an apex ‘^’

at the beginning and a dollar ‘$’ as the final

point. This notation allows us to keep track of

the direction of the trajectory when, as we

will explain later, the list of traversed points

is bent on a location fulcrum. This

transformation is not necessary for spanning

trees and for vector representations.

5.2 Prefix trees
The first reflection we made about organising

trajectories in a tree was that such a structure

is perfect to focus the analysis around a

specific location, set as the root. This implies

the choice of a selection strategy for the

designed location, that, in our case, was the

most frequent in the user’s trajectory dataset

but many other valid alternatives are possible

depending on the analysis’ purpose.

Once the root location has been determined,

the canonical prefix tree should be rotated

around it. However, this is not straight-

forward, since the same location ID can occur

in many nodes of the tree; also, it is more

expensive in terms of computation to rotate

an existing tree instead of building it from

scratch.

the root from the ones not traversing it. The

major issue, instead, is that there is no

distinction from incoming and outcoming

paths when observing the root, and that it is

not possible to reconstruct the original

trajectory: in fact, there is no connection

between the incoming path of a trajectory

and the outcoming path. However, this

representation can be used to observe in a

global way the movements around the root,

shifting the focus from the whole trajectory

to patterns related to an important location.

The last architecture we designed was meant

to have all paths sharing the same direction.

As in the previous one, under the virtual root

lie the root location node and the ^ empty

node. In this case, however, the paths

connected to the root location are only the

ones that are exiting from it; the incoming

paths are under ^, and their terminal node is

labelled as the root location. Even if this

architecture is the most formally uniform,

since all the edges follow a chronological

order, the information representation is

sparse, since we have multiple occurrences of

the root location; nevertheless, the structure

is cleaner than the first option. We define this

architecture as a meeting point between the

two structures described before.

The first architecture has been discarded

soon because of the variability of its

structure, which could impede a comparison

between users. We then chose for the second,

because thanks to the unique appearance of

the root location it enabled us to imagine

different kinds of comparison: for the third

architecture, in fact, it seemed more difficult

and expensive to keep track of all the

Since in a prefix tree a root location can occur

in different nodes, there are no determined

strategies to perform the rotation. In the

preliminary phase, we designed three kinds

of rotations, we evaluated the possibilities

each of them led, and opted for one over

them.

The first strategy was the most straight-

forward: we select one node among all the

ones whose label corresponded to the root

location, also defining a selection criteria;

this becomes the root and the tree is simply

hanging on it. We discarded this option quite

early because the representation does not add

so many advantages: first of all, the root

location is still repeated in multiple nodes

among the tree; then, we need to preserve the

original virtual root empty node somewhere

in the structure, meaning some branches can

contain edges with different directions.

The second strategy was designed to reduce

the root location to one single occurrence. In

order to do that, we ideated a tree where

under the virtual root with no location

assigned were connected siblings: the first

corresponds to the root location (on the left);

the second is an empty node, named ^, which

serves as virtual root for all the trajectories

not containing the root location. By

consequence, the new rotated prefix tree

contained two internal prefix trees, one for

the trajectories touching the root location

and one for the others, that we named

orphan paths. The advantages of this

representation are the centralisation of the

root location, the uniformity of the branches’

edges directions and the well-defined

separation of the trajectories passing from

occurrences of the root location in the leaves

under ^.

After some experiments we decided to

simplify the structure described above not

only to reduce the computation complexity

but also to make more organic the analysis:

in fact, if a location was decided to be the

fulcrum of the user’s mobility, trajectories

not traversing it could augment the noise and

appear distractive. Of course, an interesting

research path could be to relate the orphans’

branch with the main one, but it is out of the

objectives of this work.

The final structure of the rotated prefix tree is

then originated by a virtual root that gives

origin to a single node: the location root,

from which all the trajectories are developed.

Note that in this structure we can observe a

partial loss of information, since there is no

way to know how an entering path continues,

unless we encode this feature in some way.

We decided this issue could not be too

problematic, since we were interested in

understanding the general shape of the user’s

mobility, and we did not intend to observe

the single trajectories one by one.

5.3 Spanning trees
As we did for the prefix trees, we decided to

transform the spanning graphs into rooted

trees. At a first glance, this could seem an

incoherent idea, because a tree is a directed

graph, while a spanning graph is undirected.
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Fig 10 (next pages): Three strategies to rotate
a mobility prefix tree





We decided to perform this transformation

because we are interested in the shape of the

movements around a location, instead of on

the effective links between places.

Transforming the spanning graph into a

rooted tree gives us another representation of

a user’s mobility, more focused on the

locations instead of on the sequences of

visited points, as in the prefix trees.

5.4 Vectors
5.4.1 TF-IDF inspired method
Due to the lack of literature about clustering

techniques between trees (instead of among

the same tree), we also ideated a backup

technique to represent mobility through

vectors. Of course, changing the datatype, the

approach has been different, to better exploit

the characteristics of the different data

structure.

We started from the idea to create a vector for

each user, where each position corresponds

to the TF-IDF value of each possible location

in the dataset, aware that a feature selection

step would be necessary due to the highly

probable sparseness of the representation.

We imagined a way to combine this metric

with the general philosophy we followed

while creating the prefix trees, that is to give

importance to the relation between the

locations and a root, and we named it

relative-TF-IDF. In this case, the TF does not

only represent how frequently a location

occurs, but it is also weighted according to its

position with respect to the most frequent
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Fig. 11 (left): How to rotate a mobility
spanning tree.
Fig. 12 (right): How to create a relative-TF-
IDF vector.



location. Concretely, we consider d, the depth

of the tree, wlevel = -(depthlevel * 1/d), the

weight assigned to each level of distance (in

points) from a location to the root, and then

assign the weight to each location as

w(location) = i ∀ 1*w(level(i)), where each i is

a node labelled as the considered location.

This representation could by consequence

highlight which are the most central places in

the user’s mobility, adding some semantic to

the standard TF-IDF measure.

5.4.2 Feature-driven method
The second way to transform movement data

into vectors started from the mobility trees

we described above. Essentially, the idea is to

extract some features describing them, and

organise these values into vectors. The

selected features take inspiration from the

user profiling field in text analytics, and in

particular from the work of Dell’Orletta et. al.

(2013)33 who consider the dependency trees of

the sentences.

The resulting vectors had a total of nine

attributes: the median depth of the incoming

tree, and the median depth of the outcoming

tree; the maximum depth of the incoming

tree, and the maximum depth of the

outcoming tree; the ratio between the

number of unique locations and the total

number of nodes, considering the whole tree;

the median out degree of the incoming tree,

and the same of the outcoming; and finally

the maximum out degree of the incoming

tree, and of the outcoming tree.

5.5 Distance functions
To compare the trees and the vectors

generated from a mobility dataset including

many users, i. e. to look for clusters of similar

users, we need to define some criterion to

determine how much similar or dissimilar

they are. If for vectors many options are

available (like euclidean, Manhattan, and

Minkowsky), for trees the choice is less

obvious. In this subsection, we describe the

distance measures we considered.

5.5.1 Tree distance functions
Data analysis on tree-shaped structures

cannot rely on the distance functions used for

vectors. In this section, we take an overview

of the literature about the measures capable

of determining how similar or dissimilar are

two trees.

The tree edit distance is a dynamic

programming technique which calculates the

distance between two trees as the minimum

number of operations needed to convert one

of the two into the other. The allowed edits

are: add (insert a new node), delete (remove a

node) and relabel (change the value of a

node). In the most general case, each of these

operations have a cost of one each, even if in

some cases they are customised for the

research’s needs (i. e. to penalise certain

configurations)34. Formally, the tree edit

distance is defined as �(T1, T2) = min{�(M) |

(M, T1, T2)}. Many algorithms are available to

compute the optimal set of edit operations.

The major problem with this approach is that

it is ordered from left to right. This means

that two similar trajectories in the two trees

could not be detected if their position with
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Fig 13 (left): How to create a feature vector
from a mobility prefix tree.



respect to the first path on the left is not

equal. For this reason we decided to create an

ordering criterion to test this metric, which is

explained in the following paragraph. At the

same time, we also found an unordered

variation of the tree edit distance which

performs the comparisons of the branches in

sets instead of sequences34; this version also

has the advantage of being computed in

polynomial time, beating the standard

version that requires exponential time

instead.

For what concerns the ordering mechanism

of the trees, we decided to position the most

heavy branches in terms of weight: by

consequence, the prefixes with higher

frequency could be found in the left side of

the tree. Also, since this structure was

extremely interesting for studying the mere

structure of the tree, we decided to remove

the locations’ labels from the nodes: in this

way, two trees were comparable only for the

user’s habits instead of for the visited

locations.

5.6 Treemob: the Python
module

All the mentioned structures are available in

the Python module we created35. We took care

of creating inline documentation in the code,

so that it is reusable for future works. In the

Appendix the reader can find the full

description of all the methods and classes we

implemented.

5.7 The visual
representation
of mobility trees

Data visualisation is fundamental for both

the data exploration step and the

communication of the research outcomes.

For this reason, we studied a visual system36

to represent and explore the mobility trees

obtained through the mentioned

methodologies.

We decided to implement it in the Javascript

library D3.js, a standard tool for data

visualisation. This choice allowed us to

design interactive modules and to have

control on all the aspects of the

representation: in fact, starting from simple

snippets in the Observable platform, we were

able to create complex and customised

visualisations.

The output is then a web page describing

different aspects of the user's personal

mobility tree. We organised each component

in a hierarchical order, so that the most

important (and more general) elements are

suddenly accessible, while the more specific

ones are visible in a second moment. This is

coherent with the Shneiderman’s

Visualization Mantra37.

All the graphical choices we made were

driven by the aim to communicate complex

information in the most accessible way. We

adopted a rigorous colour system and we

added only functional elements to the

visualisation. To increase the

understandability of each component, we

also added a brief description explaining

what it represents and how to read it.
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Fig. 15: The mobility prefix tree mapped on
the distance travelled with respect to the
root, accompained by the barchart
representing the amount of leaves for each
km from the root.

Fig. 14: The mobility prefix tree in the
classical shape, accompaied by the barchart
representing the amount of terminal
locations for each level.



The next component we implemented

represents the richness of the location set,

meaning the proportion between the number

of different locations encountered and the

number of all the traversed points. This gives

information about how much habitual is the

user: if the richness is low, in fact, it means

that the same locations are traversed quite

frequently; on the contrary, an elevated

richness means that the user explores many

different locations, and rarely returns on the

same routes. In this case, we adopted a

variation of the barchart that clearly displays

the proportion between the total and the

location set. Maintaining the same colour

system, we created a bar for the incoming,

the outcoming and for the whole tree.

The last asset of the tool is the histogram of

the local entropies of the locations. The

entropy is the measure of information

encoded by an element in a system, so in this

case how much information a location carries

with respect to the user’s mobility. Its

distribution by consequence serves to capture

the complexity of the personal movement

data of the user. The component is reactive

with the tree visualisation: if a node is

hovered, the histogram bin corresponding to

the location’s entropy value is highlighted, so

that it is possible to make a one-to-one

inspection.

An immediately visible characteristic of our

data visualisation is the absence of a map,

which could seem strange, since we are

representing information that is highly

connected with the geographical dimension.

This was a choice driven by the aim to offer

the analyst a tool that is respectful for the

user's privacy, and to demonstrate how many

strategies we can find with the limit of

anonymization. Following the example of

some of the visualisations presented in the

introductory sections of this thesis we took

the apparent limitations established by

ethical concerns as an opportunity to tell
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Figg. 16, 17, 18 (from top to bottom): The
median and maximum out-degree
visualisation; the barchart representing the
ratio between locations and total nodes; the
distribution of the locations’ entropies.

The first output we designed has been, of

course, the user’s mobility tree. From an

information architecture point of view, we

adopted the most feasible representation,

that is, the node-link layout, also named the

tree-shaped structure. This choice has been

of course automatic, since the starting data

was organised in the same way. We adopted

the botanical analogy, placing at the bottom

the incoming trajectories and at the top the

outcoming ones. Being the most important

component of the visualisation, the tree is the

first element we can see in the page. So, each

node corresponds to a location, and each link

is a path from one place to another. To

highlight the important locations, we scaled

each node according to its frequency in the

user's trajectory dataset; also, when a node is

hovered, only the other nodes in the tree

corresponding to the same location are

highlighted, allowing to discover patterns in

the user's habits.

The canonical tree representation is set in

such a way that each node is positioned in a

layer, according to how far in terms of steps

is from the root. This means that each link,

corresponding to the path from a location

node to another, has the same length as all

the others in the tree, regardless of the

distance travelled. This could be quite

limitant in a user experience point of view,

because we are not able to see if there are

longer or shorter paths. For this reason, we

also proposed a variation of this

representation where the length of each link

is proportional to the distance in kilometres

between the two locations linked by the edge.

At the right of the tree component we placed

a leaf exploration tool which shows what

percentage of leaves appear at a certain

depth.

This information reveals another aspect of

the user's mobility, that is how far they

generally travel. We used barcharts as the

representation technique for how simply and

clearly they represent discrete information.

In the bottom of the page, we then

introduced other components describing

more specific features of the mobility tree.

Firstly, there is the out-degree diagram,

showing the median and the maximum

number of connections exiting from the

nodes. The information inside this element is

organised in such a way that we can

distinguish the out-degree of the incoming

tree, of the outcoming tree and also of the

whole tree. We used the same colour code of

the tree diagram, by consequence the former

is yellowish, the second is green, and the

latter is blue. From the point of view of the

shape, we re-used the tree-structure to

maintain the same information encoding:

this uniformity should increase the

understandability of the graph.

This diagram is useful to numerically

understand how fragmented are the branches

of the tree: for example, we could see that

after reaching the root location, there could

be multiple and various different travels,

maybe suggesting that the user lives in a

peripheral area and needs to reach the city to

work, go to the gym, and go shopping.



something new, or at least from a different

perspective, about personal mobility data.

5.8 Preliminary results
5.8.1 Feasibility tests
Before starting the analysis, we ran several

tests to measure how much time was

required by each method to be computed.

Essentially, we took a batch of users from a

subset in the analysis dataset, in particular

selecting the ones with more trajectories: this

allowed us to make a pessimist estimation of

the computational cost of the operations, and

to select only the feasible techniques.

We immediately noticed that the basic

operation required minimal time,

considering the heaviest tree, with 681

trajectories, 5428 locations and an average

trajectory length of 84.9 points, over 30 tests:

the generation took in mean less than half a

second, and also the rotation was not

obstructive, since it took at most 1.1 seconds.

Considering that the data was not cleaned,

and that the user itself was a borderline

example, we proceeded with the other tests

without further explorations.

We performed deeper tests on the other

operations: for each user, we built four

different prefix trees, each of them considering

a random sample of 25%, 50%, 75% and 100% of

their trajectories. The aim of this test was also

to have an idea of how much the amount of

data affects the performance. We realised that

the standard tree edit distance was unsuitable

for a real-world problem with a lot of users to

analyse, since our tree ordering algorithm took

in mean from 103.4 to 560 seconds, and the

distance function ranged between 10.5 and 353

seconds. If the ordering could be optimised in

some way, there was no solution for the

distance measure.

Instead, the unordered edit distance in the

first tests took from 4.3 to 128.5 seconds, but

later in the analysis we found a way to

optimise the adjacency matrix structure

required by the algorithm and the mean on

the real data dropped to 0.4 seconds, also

thanks to the data cleaning and selection

step.

5.8.2 Project management
reflections

Due to the large amount of techniques we

theorised in the preliminary phase, we had to

decide whether covering all of them in the

analysis, and providing broad but superficial

results, or focus on a set of them and make a

deeper research, even if not complete for

what concerns the tested methods.

We decided to go for the second route,

because we were interested in testing the

limits of the tree-shaped representation and

because the same methodology we adopted

for one case can be easily transposed for

other cases. By consequence, we selected the

prefix tree structure instead of the spanning

tree, and the feature-based representation for

the vectors, instead of the TF-IDF based one;

for what concerns trees, we believe that the

chosen architecture could be more

understandable and better lent itself to being

narrated; with regard to the vectors, we

thought the second option was more

coherent with the rest of the analysis, since it

could provide another perspective on the

same problem, but given the same premises.
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Tables 1, 2, 3: The measured times are a
pessimistic extimation of the methods’
performances since the trees used for the
tests were the deepest and no preprocessing
has been performed on them.



6. Experiments



The aim of our experiments was to discover

groups of people linked by the same mobility

habits, and to verify if different cities showed

different movement patterns. To do so, we

performed several tests using a set of

clustering algorithms, both directly on the

prefix trees, the structure we selected, and on

their vectorial abstraction; for the latter case,

we also searched for optimal projections in

less dimensional spaces, with different

dimensionality reduction techniques. To

compare the cities, we controlled through the

z-test if there was any statistically difference

between the distributions of the vector

attributes, i. e. the median and maximum

depth of both the incoming and the

outcoming subtree, their median and

maximum nodes’ out-degree, and finally the

ratio between number of unique locations

and the total amount of nodes.

To perform the experiments, we used a
dataset named octoscana. Its records were
obtained by recording the movements of
private vehicles with on-board GPS receivers,
which allow the user to have a discount on
the insurance in exchange for their data. The
dataset consists of three typologies of table:
the seed, the trajlinks and the trajstats. Seed

contains all the locations’ IDs, and associates
them to the geographic coordinates they

correspond to, so the table has three columns:
locationID, longitude, and latitude. Trajlinks

contains the information about each trajectory
in terms of traversed points, and is composed
by four columns: userID, trajectoryID, pointID

and locationID; userID is the anonymised
identi"er for a vehicle, trajectoryID is an
integer assigned to each trajectory, and
pointID orders each point of a trajectory from
0 to the length of the travel; locationID is the
same location identi"er of the seed "le.
Finally, trajstat contains a general description
for all the trajectories, like the date of the
travel, the duration and the distance covered;
it has nine columns: userID, like in the other
tables, trajectoryID, length (in metres),
numPoints that is the number of locations
traversed, startTime, endTime, duration (in
seconds), startCell and endCell, that are the
boundary locations IDs.

During the analysis step, we opted for a
vertical approach, focused on the most
promising technique, rather than on a
horizontal and probably super"cial overview
of all the methods theorised in the previous
chapter. By consequence we decided to focus
on the pre"x tree representation since it
seemed the most unexplored, exotic, and
radical, in addition to apparently being the
most di#icult in terms of analysis: in fact, if
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for vector pattern mining many techniques
are available, and spanning trees are more
adaptable to graph analysis, tree-shaped data
are a quite overlooked horizon. Also, from a
scienti"c communication point of view, we
saw the potentiality of the tree analogy, and
how many data storytelling opportunities we
could exploit. We chose the more di#icult and
less explored path in order to evaluate the
feasibility of the representation and the major
issues the analyst could encounter while
working with it.

6.1 Preprocessing
Due to the huge amount of locations and

trajectories generally present for each user,

we need to consider some data cleaning

techniques to reduce on one hand the

computational time and on the other the

noise that could affect the analysis.

6.1.1 Choice of the locations
We decided to focus on two cities, Pisa and

Florence, as analysis prototypes, aiming to

find which techniques are the most useful

and to understand the limits of the selected

representations. The two cities differ both in

extension and in number of users, by

consequence constitute a good starting point

to detect potential differences.

From the octoscana dataset, then, we selected

a square perimeter of coordinates

surrounding the city and including the

adjacent area, assuming that not all the users

live inside its exact boundaries.

For what concerns the dataset of Pisa, we

started with 1895 users, that became 1636

after the cleaning. In the starting dataset, we

observed a distribution of the number of

trajectories per user with a mean of 588.79, a

median of 387, and a standard deviation of

6.1.2 Users and trajectories
pruning

The preprocessing of each user's dataset

required multiple passages to ensure to

discard outlier trajectories and all the profiles

with not enough data to be compared with

the others.

First of all, once we selected in the seed file

the locations inside the perimeter, we

selected the users whose mobility is

developed at least by 65% in the city. To

calculate this percentage, we copied the

user’s trajectories dropping all the locations

not inside the perimeter, and compared the

sizes of the two datasets: if the clean dataset’s

size was at least the 65% of the original, we

kept the user. We chose this strategy in order

not to penalise the user’s whose mobility is

reducible to few locations in the city, and in

order not to promote infrequent travels

traversing most of the city’s locations. Then,

we proceeded with a user-specific data

cleaning: we deleted all the outlier

trajectories in terms of length. To do so, we

calculated the distribution of the points

traversed in each travel, and deleted the

outliers according to the IQR test. We chose

to rely on the trajectory length in terms of

traversed locations instead of in terms of

travelled metres because, thanks to the data

tessellation, we knew that each point had a

distance of around 200m from the adjacent

ones; we considered it a good approximation.

Once we did this, it was time to delete global

outliers: we extracted for each user the quantity

of trajectories and their median length, and,

after we converted them to the logarithmic

scale, we re-performed the IQR test on the two

distributions and deleted the outliers.

705.1; once cleaned, these values turned to

637.1, 501, and 548.7. The distribution of the

lengths of each trajectory, instead, started

with a mean of 29.15, a median of 18, and a

standard distribution of 51.02, and ended

with those values becoming 23.73, 17, and
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Figg. 19 (left), 20 (right): The Pisa dataset before and after the preprocessing:
focus on the median trajectories’ length and on the number of trajectories for
each user.



24.5. The original number of users in the

dataset of Firenze, instead, was 7155, and

became 5762 after the whole cleaning. The

initial distribution of the number of

trajectories per user had mean 487.47,

distribution of 49.42, values that became

20.468, 14, and 22.795.

Ending the cleaning process, we proceeded

with the users’ tree generation. Since the

amount of data and its complexity, we

slightly simplified the trajectories using the

Ramer–Douglas–Peucker (RDP) algorithm;

RDP approximates a path deleting the points if

they do not differ more than a certain

threshold, in terms of direction, from the

previous and the following points. We found

that an epsilon of 0.001 provided a good

approximation without losing too much

information. In fact, we also tried to use 0.005

and 0.0005, but the final results were

conceptually equal, so we opted for the middle

way, with not too much approximation and at

the same time with faster distance calculations

during the unsupervised learning phase.

Starting from these clean data, we generated

the mobility prefix tree for each user.

6.1.3 Distance matrix generation
Since clustering algorithms are generally

expensive in terms of the amount of needed

computations, because they iteratively need

to calculate distances between points, we

decided to pre-compute the distance matrix

between trees, using the already mentioned

unordered tree edit distance.

6.2 Choice of the
clustering algorithms
The first algorithm we thought of was the k-

medoid because on one hand we needed to

find a representative tree for each cluster but

mainly because tree data is not suitable to be

median 255, and standard deviation 841.48,

values that became 553 , 386, and 532.697

after the cleaning. Instead, the distribution of

the lengths of each trajectory had originally a

mean of 25.67, a median of 14, and a standard

used with algorithms that use artificial points

as centroids. We performed a grid-search on

the k measuring the silhouette value for each

value between 2 and 30, for 30 different

random medoid initialisations. We also

considered the amount of samples in each

cluster and the silhouette of each single

cluster, in order to have a more detailed view

of the problem. We also tested DBSCAN and

OPTICS as density-based approaches, as well

as many hierarchical clustering algorithms

such as single, complete, and centroid

linkage.

6.2.1 Clustering trees
Both for Pisa and for Florence, the K-medoid

clustering with unordered tree edit distance

resulted in one prevalent cluster with mean

high silhouette (on average, 0.71 for the

former and 0.62 for the latter), and other

sparse and fragmented clusters with negative

silhouette, no matter the value of k; however,

in general the best results were obtained with

k equal to 4. We observed the same results

with different cleaning techniques and with

different RDP epsilons, and we kept the

configuration that brought the higher

silhouette, that is the result of the already

explained preprocessing. For Pisa, the main

cluster contained on average 1481.5 users,

while the one for Florence 2552, suggesting

that a large number of people seems to have

similar movement habits.

To validate these results, we also ran

DBSCAN and OPTICS, and we observed the

same phenomenon. To select the epsilon to

be used in DBSCAN, we plotted the distance

from the ith neighbour, and since in a range

of i between 2 and 8 there were no significant
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Figg. 21 (left), 22 (right): The Florence dataset before and after the
preprocessing: focus on the median trajectories’ length and on the number of
trajectories per user.



differences, we kept the 4th neighbour

distance, as suggested by the authors of the

algorithm; for Pisa, the epsilon was equal to

3000, for Florence to 2000. DBSCAN

agglomerated the 96% of the samples of Pisa

in a unique cluster, and the 97% of the ones

of Florence. Comparable results were

obtained using OPTICS.

Finally, also the hierarchical clustering, in all

the tested techniques, showed the presence

of a unique cluster generated from a

predominant subsection of the whole dataset.

6.2.3 Clustering vectors
The next step of the analysis consisted in

performing the clustering on the vectorial

abstractions of the prefix trees, aiming to

discover more general patterns in the

mobility of the users, and completely

ignoring the geographical dimension of the

movements. In this case, we only performed

k-means combined with some feature

projection techniques.

For both cities, we performed a grid search

on the number of clusters (k), considering a

range between 2 and 6, and we computed the

the prototypes of Pisa P0, P1 and P2, and the

ones of Florence F0, F1, and F2.

For Pisa, the most visible difference is the

frequency of the nodes, which highlights

three different phenomena: in P0, we see

branches containing both quite frequent and

rare locations (the bigger and the smaller

nodes); instead, P1 is characterised by

generally big nodes, while in P2 we see

generally infrequent locations. To interpret

these visual differences, we can also read the

values relative to the richness of the location

set, as well as take a look at the distribution

of the nodes’ entropies.

We see that P1 has the lower location

richness: this is coherent with the generally

average silhouette of each configuration; the

test was repeated for: the vectors with

standardised values, their projection through

independent component analysis (ICA),

principal component analysis (PCA), with a

number of features from 2 to 4, and

multidimensional scaling.

Both for Pisa and for Florence the best results

were obtained through a 2-means on the 2-

features projected on the principal

component, with a silhouette of 0.45 for the

former and a 0.49 for the latter. However, in

all the configurations we tested, we noticed

that no meaningful cluster was obtained: also

the higher results were divisions of a bigger

dense agglomerate of points, corresponding

to the majority of the users.

For this reason, we decided to pick the

second best result, that is a 3-means on the 2-

dimensional PCA, to see if any interesting

difference emerged in this space, and to

provide three prototypes of users, to see if

some difference occurs, despite the presence

of a unique big and dense group. We

visualised the trees which were closer to each

cluster’s centroid, for both cities: we name

frequent nodes, meaning that the user

generally visits the same locations in the

same order; also, since the variance of the

nodes sizes is quite small, meaning similar

frequencies among all the locations, we also

observe the higher values of entropy.

On the contrary, P2 is richer in terms of

locations, and this is also validated by the

smaller radius of the nodes: the user seems to

be less regular in the choice of the paths to
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Figg. 25 (left), 26 (right): The results of the 3-means on the vectors projected in
two dimensions through PCA.

Fig. 27 (next two pages), 28 (following two
pages): The outcoming trees of the medoid
users of Pisa P0, P1, and P2, and Florence, F0,
F1, F2. We preferred to show only the topmost
part of the tree, corresponding to the
outcoming paths, to allow the user better
appreciating the details. The incoming trees
present analog traits.
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Outcoming trees of Pisa’s medoids

P0

P1

P2
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Outcoming trees of Florence’s medoids

F0

F1

F2



prototypes are similar in terms of richness of

the location set and in terms of out-degree. In

Florence, it seems to be more discriminant

the amount of possible prefixes: we see that

F1 has a quite reduced tree, while F0’s root

has a very large number of successors,

meaning a lot of variety of prefixes; F2 is

larger with respect to F1, but it results quite

small if compared with F0.

By looking at the distances travelled, we can

see that they are quite diversified, contrary to

what we observed in the users Pisa. Also, the

distribution of the number of leaves (start or

stop locations) with respect to the distance to

the root is less graduated: it seems there are

particular ranges of distances that are usually

travelled.

Another qualitative test we performed was to

plot the root of each user dividing them by

cluster on the map of each city to verify if

different areas of the clustering corresponded

to different urban zones. Neither in Pisa nor

in Florence seems to exist a geographical

distinction of the groups.

6.3 Comparing the two
cities’ distributions

Another analysis we performed was to

compare the characteristics of the trees

belonging to the two cities. To do it, we

considered the features used to encode the

trees into the vectors used for the previous

step. We performed a z-test for each

dimension after having standardised the

values. Even if for some attributes the test

indicated statistically different means, we do

not take these results as too reliable, since

cross. Since the locations’ frequencies are

slightly more variable, we observe a lower

maximum entropy.

P0, finally, seems to be in a certain sense at a

midway between P1 and P2: if we can notice

quite frequent locations, we also observe very

rare ones, so the frequency variance is higher

than in the two other prototypes. Also the

richness of the location set is close to the

mean of the ones of P1 and P2. A very

interesting detail in P0 is the presence of a

very thick branch which probably identifies

the routinary travel the user does to go to

work.

The three prototypes seem not to differ too

much in terms of node out degree.

When looking at the visualisation mapped on

the cumulative distance travelled in each

path, we do not see great differences in terms

of maximum kilometres travelled in one

single trip. Also, the three prototypes have a

similar distribution of the distance of the

leaves: in all cases, we see the majority of

travels ending within the first seven

kilometres, and the more we are distant from

the root, the few possible travels (and by

consequence, leaves) we can observe.

For what concerns Florence, we see less

visible differences regarding the locations’

frequencies, excluding F0, where we notice

more variance and by consequence a slightly

greater maximum value of entropy. The three

some distributions resulted quite skewed: by

looking at the table 7, in fact, we can see that

in these cases the difference between the

means is quite small; the greater difference

seems to be in the outcoming trees, where we

have a difference of approximately two units

in the out-degree and of 0.15 in their median

depth. As shown in the plots, however, we are

not looking at a blatant difference.

6.4 Interpretation
Against original expectations we were unable

to find distinct categories of users given the

tree-shaped data and the derived vectorial

representation. By observing the most central

sample of each cluster in both cities,

however, we noticed few characteristics that

distinguish each of them. This could mean

that the data space is well graduated, i. e.

there are intermediate steps between one

type of user and another. This hypothesis

seems to be supported by the fact that the

results don’t change if the preprocessing, the

algorithm, or the data structure is modified.

The most interesting factor that emerged has

been the fact that it seems these clusters are

distinguished by the regularity of their paths:

between the observed users, in fact, there is

at least one who has quite equi-probable

nodes among all the branches, while the

others present very frequent locations

opposed to very rare ones. This

characteristic, that is better visible in Pisa,

seems to be analogous to the idea of the

returners and the explorers suggested by

Pappalardo et. al. (2015)10.
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Figg. 29, 30, 31 (from top to bottom): The
coordinates of the root locations of each user
of the Florence dataset, divided by cluster
and plotted on the map. Pisa’s output is
analog: no geographical pattern emerged.



Also, the fact that there is no correspondence

between the root’s position of the users and

their belonging to one specific cluster is a

good clue suggesting that the grouping is not

biassed by the traversed locations.
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Table 7: The results of the z-test on the vectors’ attributes of the two cities. The
test was performed after standardising the values.

7. Conclusions



In this thesis we explored how we can map

personal mobility data into tree structures. In

particular, we focused on a variation of the

prefix tree that is rotated under the most

frequent location. As a distance function

between them, we used the tree unordered

edit distance, a special type of tree edit

distance that allows us to compare them even

if their branches are not ordered from left to

right. We also created a vectorial description

of the trees, which captures its structural

characteristics. For the analysis, we focused

on the cities of Pisa and Florence, and we

exploited unsupervised learning with the aim

to find different types of user based on both

the tree and the vector representations. The

results were consistent in all the tests, in

spite of the algorithm, the data type, and the

preprocessing, and showed the presence of a

unique, dense group, with a small percentage

of noise.

For what concerns future developments, with

the help of the visualisation tool, and setting

as root semantically different locations, the

scientist can try to understand in depth how

humans move, maybe also comparing trees

generated from different sets of data

belonging to the same person: for example,

we could compare the working-week tree

with the week-end tree, or the winter and the

summer tree.

Also, we could try to compare cities from

different countries, or the trees generated

from other vehicles besides cars, and see if

the results we obtained change. Another

aspect we did not explore is the clustering

inside a unique tree, to understand if there

are recurrent patterns within the user’s

movements.

To sum up, this work suggests the

potentialities arising while thinking about

mobility in the shape of trees. The results we

obtained seem to confirm the analysis of

Pappalardo et. al (2015)10 which see a

dichotomy between returners and explorers.
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Appendix



This appendix contains the description of the

classes and the methods developed for the

Treemob Python module we wrote to

perform our analysis. The full code is

available at the link https://github.com/

sblbl/treemob.

We start with the PrefixTree class and its

methods, then we pass to the SpanningTree

class, for which we do not repeat the methods

that are equal to the ones available in

PrefixTree. Finally, we review all the useful

functions used for the data preparation,

archiviation, and mining.
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