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Abstract

In recent years it has become clear that data is the new resource of power and

richness. The companies that are able to manage it to extract useful information

are the ones that are expected to last and increase their profits. One of the ways

in which data is conveyed is through natural language: every day we produce

an enormous amount of linguistic data, in written or spoken forms. Through the

help of computational resources, we can manage such a big quantity of informa-

tion, in an automatized and scaled way. Before being able to do this, we need to

find ways to allow computers to represent linguistic knowledge. This is indeed

a problem, considering that computers do not have linguistic proficiency as we

humans do. For words to be processed by machine models, they are often re-

quired to have some form of numeric representation that models can use in their

calculations. One method that has become influential in recent years is word em-

beddings, defined as the representation of terms as real-valued vectors such that

the words that are closer in the vector space are expected to be similar in mean-

ing. These techniques are very popular and have shown great success in multiple

studies, but it is still not clear what kind of linguistic knowledge they do acquire.

Also, it is still an open question exactly in which way some of their parameters

affect the knowledge they acquire. The present work is motivated by figuring

it out. We are going to test the system on a linguistic problem. The issue un-

der examination is colexification: the phenomenon in which, within a language,

multiple meanings are expressed by a single word form. One of the reasons why

this circumstance happens has been suggested to be a semantic connection be-

tween the meanings. It follows that two similar meanings are more expected to

be conveyed through a single term with respect to two meanings pertaining to

completely different fields. We assume that there is a relationship between dis-

tributional similarity and colexification, in the sense in which the former is infor-

mative about the latter. This assumption is more concretely based on the results

from Xu et al. (2020). We use this study as a general guide to follow in this in-

vestigation. We used some word embedding models, specifically, fastText trained



with different window sizes, to obtain the cosine similarity values between pairs

of words. Subsequently, we performed two predictive tasks, showing how us-

ing a predictive model like logistic regression and nothing else than the cosine

similarity values between word vectors, it is possible to predict whether a pair

of meanings is a highly frequent colexification or whether it is a colexification at

all. The results suggest that the linguistic models in use were able to acquire a

certain knowledge as regards word meaning. Additionally, changing the model

parameter of window size, we inspected what kind of linguistic knowledge the

computational models acquired concerning colexification. The project covered

the whole working process. We started from the data collecting, understanding

and cleaning, to get to the training of the fastText model, and evaluation of the

results obtained by the predictive model. Our findings indicate that a narrow

window size value is sufficient to allow the linguistic model to acquire a good

level of semantic knowledge in a distributional similarity task. Additionally, the

parameter of window size, depending on the task, does not always lead to differ-

ent results in computation. This raises a broader question: in which tasks does

window size matter and what does this tell us about these tasks.

Keywords: Word Embedding, Natural Language Processing, FastText,

Window size
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Chapter 1

Introduction

“The fish trap exists because of the fish. Once you’ve gotten the fish you can forget the trap.

The rabbit snare exists because of the rabbit. Once you’ve gotten the rabbit, you can forget

the snare. Words exist because of meaning. Once you’ve gotten the meaning, you can forget

the words.”

Zhuangzi, Chapter 26

The recent fortune of artificial intelligence and of the technologies that use it

has stemmed from its ability to manipulate the vast amounts of data available

today.

Data has undoubtedly been established in recent years as the new resource of

power and richness. Suffice it to see that the podium of the best global brands is

formed by Apple, Amazon, and Microsoft, three companies which work with a

huge amount of information every day 1.

One of the ways in which data is conveyed is through natural language. Ev-

ery day we produce an enormous amount of linguistic data, in written or spoken

forms. There is one problem arising: how to harness this information, in other

words, how to make this information useful. To explain the problem from an-

other perspective, we have large amounts of linguistic data, but we need ways to

capture what this data conveys.

Every living creature has a way to communicate. Birds communicate with

vocal sounds and body language, trees communicate using pheromones, fishes

communicate through various characteristics like color, electrical impulses, and

1To see the complete ranking: https://www.interbrand.com/best-global-brands/
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bioluminescence. But no matter how complete and complex their systems could

appear, it seems that the human language overtakes them. Other creatures use

language as a means to achieve their primary purposes: eating, reproducing, sur-

viving. Humans, besides these necessities, use language as an entertainment

medium (it is the case of poetry or radio), as a way to reach trivial goals (e.g.

make friendship), or as a self-studying system (for example, when we learn a

new language), just to name some uses 2. Linguistic competence is so complex

that it has been thought to be what distinguishes us as intelligent beings. It is the

case of the Turin test where the language was the mean to test whether a person

was able to distinguish between human and computer’s answers [Turing, 1950].

Little is still known about how language develops or is learned. Theories debate

on various linguistics issues, leaving a big amount of questions still unanswered.

For example, is language an innate characteristic? How can we know the struc-

ture to build a sentence? How to determine if a language allows the lack of the

subject pronoun?3 It is not easy to answer these questions, pointing out how little

we know about our linguistic faculty.

Besides these unresolved questions, waiting to have a complete understand-

ing of the subject to start using technology in the linguistic field is not an option.

On the contrary, there appears the possibility to use computational approaches

to shed a light on human linguistic phenomena; and as already anticipated, the

state-of-the-art technologies already use computational techniques to grasp in-

formation from language, showing how it is not even necessary to have a full

understanding of the language faculty [Storks et al., 2020].

The first thing we will focus on is exactly how it is possible to represent lin-

guistic knowledge in computational forms since computers do not have linguis-

tic proficiency as we humans do. For words to be processed by machine models,

they need some form of numeric representation that models can use in their cal-

2To deepend the issue, check Hockett [Hockett and Hockett, 1960]
3To deepen these questions, some cornerstones are listed. Chomsky and Jackendoff proposed

the innate nature of language through Generative Grammar and Universal Grammar, [Chom-

sky, 1965, Jackendoff and Peruzzi, 1998]. Chomsky proposed the famous X-bar syntax struc-

ture [Chomsky, 1957]. Biberauer et al. proposed the existence of a parameter that triggers the

absence of the subject pronoun [Biberauer et al., 2010]

14



culations. Linguists and language engineers tried to solve the problem over the

years, providing different ways to represent word meaning and linguistic struc-

tures. The meeting between Computer Science and Linguistics was unavoidable:

the first studies how to manage information and the second analyzes the most

powerful tool humans have to express information (i. e. language). The combina-

tion between these two sciences leads to the development of Computational Lin-

guistics: the scientific study of language from a computational perspective [The

Association for Computational Linguistics, 2005]. Computational Linguistics has

fueled the possibility to represent language in a machine-friendly way, consisting

of ruled, ordered, and coherent systems, with the objective of making machines

capable of reproducing linguistic competence.

One of the most influential mechanisms in recent years are word embeddings.

These models represent each word as a real-valued vector in a multi-dimensional

vector space. In this environment, words that are closer in the vector space are

expected to be similar in meaning. The paradigm comes from the distributional

hypothesis, which states that words that occur in similar contexts tend to have

similar meanings [Harris, 1954, Firth, 1957]. The system has been adopted by

multiple models among which the most widely known are Word2vec [Mikolov

et al., 2013a, Mikolov et al., 2013c], GloVe [Pennington et al., 2014] and fastText

[Bojanowski et al., 2017]. These models all rely on a vector space paradigm and

would allow performing operations with distributional semantic word meaning.

Apart from the problem of word representation, we can perform multiple tasks

on linguistic data. To list some, this is the case of sentiment analysis, semantic

search, text mining.

Although the popularity and success of these models, it is still not clear what

kind of linguistic knowledge they acquire. This is because some of the models

rely on a neural network structure, facing the well-known problem of the black

box4. In short, we can explain what the model does and how it does it, but we

cannot explain its results. The present work is motivated by trying to better un-

derstand the linguistic knowledge learned by the models, working on a practi-

4A model is called black box when input and output are known but its internal behavior is not

visible or is unknown; its decisions are not completely understandable or predictable

15



cal case. We are going to test the system on a linguistic problem and adduce,

based on its performance, what kind of linguistic knowledge it acquires and un-

der which circumstances (i.e., parameter settings). The issue under examination

is colexification: the phenomenon in which, within a language, multiple meanings

are expressed by a single word form [Xu et al., 2020a, p. 3]. To make an example,

this is the case of the Spanish word “pueblo” which means both “village” and

“people”.

One of the reasons why this circumstance happens is thought to be a semantic

connection between the meanings [François, 2008, Xu et al., 2020a]. Under this

assumption, two similar concepts are more expected to be conveyed through a

single term with respect to two concepts pertaining to completely different fields.

For example, the Italian word “dito” conveys two similar meanings: “finger” and

“toe”, that is “any of the five separate parts at the end of the foot/hand”. At the

same time, to avoid incurring in communication’s misunderstandings, two con-

cepts that are very related in meaning with a high probability use distinguished

lexemes (this is the case, for example, of “brother” and “sister” [Regier et al.,

2016]).

In this work, we assume that there is a relationship between distributional

similarity and colexification, the former being informative about the latter. This

assumption is based on various previous studies that defended a cognitive econ-

omy tendency [Geeraerts, 1997, Bloomfield, 1922, Rosch, 1978, Zipf, 1949]; and,

more concretely, on the results from Xu et al. [Xu et al., 2020a]. If a computational

model was able to correctly represent meaning, we would verify the claim. In

short, we expect to find a way to operationalize linguistic similarity (in this case,

distributional similarity), and use the obtained values to verify the theory. In ad-

dition, we plan to inspect in more detail what kind of linguistic knowledge these

models acquire with respect to colexification, by changing the models’ parame-

ters. We expect that by changing the parameters used to train the computational

model, we should see how the linguistic outcomes are modified.

The results we obtain show how using a computational model of meaning and

nothing else than the cosine similarity values between word vectors, it is possible

to predict if a pair of meanings is a highly frequent colexification or if it is a colex-
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ification at all. This means that the linguistic model was able to acquire a certain

knowledge as regards word meaning. Specifically, the model succeeds in repre-

senting words in the vector space, with distributional similarity understanding.

Furthermore, when changing the parameter of window size in the model train-

ing phase, we modify the values of the word vectors, and subsequently both the

cosine similarities and the predictions. The window size parameter represents

the number of words to consider as context when training the model. Given that

we rely on the distributional hypothesis to catch the word meaning, this param-

eter sounds like the most important one for our task. We aim to obtain the most

reliable word similarity schema, and we obtain that with a window size dimen-

sion of 3, i.e. we consider three context words on the left and three context words

on the right of the target word when training the model. Furthermore, we also

noticed that there is a certain invariance with respect to window size depending

on the task. This raises broader questions about the kind of tasks in which win-

dow size matters; and suggests that highly frequent vs. less frequently colexified

meanings are different.

The thesis’s structure is composed of six chapters, the first being the ongoing.

Chapter 2 will handle the state of the art of word representations, with a focus

on word embedding models.

Chapter 3 will set up the research problem, and explain why we decided to

address it. We will study the work of Yang Xu et al. [Xu et al., 2020a], analyz-

ing how they developed their analysis. In this section, we will also describe the

development plan to follow in the following chapters and phases of work.

Chapter 4 will explain the implementation of the project, with its evaluation.

The chapter will begin with a data management phase, followed by the creation

of the colexification data frame, the development of the bootstrap process, and

the calculus of probabilities associated with each meaning pair. We will describe

how we obtained the cosine similarity values for the colexified meaning pairs

using the pre-trained fastText model, and analyze their values. Subsequently, we

will use the logistic regression model to answer two questions:

• How well can the cosine similarity values help us in predicting whether two

17



meanings are highly colexified across different languages?

• How well can the cosine similarity values help us in predicting whether two

words are a colexification at all?

In Chapter 5 we will modify the process explained above. We will prepare a

training corpus and train our fastText models, changing only the value of window

size.

To finish, chapter 6 will judge the final outcome, by carrying on the conclu-

sions and the future developments.

It should be noted that the goal of the current work is not to replicate or out-

perform the results obtained by Xu et al. The focus will rather be to study if a

word embedding model is able to acquire linguistic knowledge, specifically the

distributional similarity existing between words.

The whole project has been carried on as traineeship experience working re-

motely at the Computational Linguistics and Linguistics Theory (COLT) group

of Universitat Pompeu Fabra of Barcelona 5. For this reason, besides the purpose

of testing linguistic knowledge of word embeddings, there was another aim, con-

sisting of developing work-related skills, to name a few, coding and code man-

agement, decision making, reporting, and using existing state-of-the-art compu-

tational algorithms.

System specifications

The experiments were performed mainly on the Google Colaboratory service6.

This platform allows running experiments on the cloud exploiting Google’s pro-

cessing power.

The model training phases were performed remotely on a High Performing

Computing (HPC7) Cluster of Universitat Pompeu Fabra of Barcelona.

5COLT: https://www.upf.edu/web/colt
6Google Colab: https://research.google.com/colaboratory/
7HPC UPF: https://guiesbibtic.upf.edu/recerca/hpc

18



Script availability

All the scripts to inspect and replicate the analysis are available in the following

GitHub repository:

https://github.com/sarabert96/Colexification
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Chapter 2

Representing word meaning

This chapter will retrace the steps of the computational word representation, starting

from the most naive methods and reaching developed word embedding mechanisms, able

to better grasp word meaning.

Computers, for the way they are designed, can only work with electronic sig-

nals, processed at the lowest level in the processor. The most straightforward

way to represent an electronic signal is through digits, specifically zeros, and

ones. These digits constitute the binary code which, in turn, is the elaboration of

numbers, operations, and instructions. Just like images, processed in tiny squares

called pixels where each pixel is stored in memory as a combination of colors; or

songs, designed as slices of audio signals, represented through binary values; text

also needs its representation.

ASCII (American Standard Code for Information Interchange)1, ISO-8859, Uni-

code2 are good ways to store text data. In these coding systems, every digit is

saved as one or more bytes. But unfortunately, the systems do not allow to have

any awareness of the words’ meanings, merely creating a convention between a

code and a graphic symbol.

To try to solve this problem, there have been explored various possibilities. In

the following sections, we will see different ways to represent words, looking at

how they work and tracing the development of the field.

1ASCII: https://www.ascii-code.com/
2Unicode: https://home.unicode.org/
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2.1 Bag of Words

Bag of Words (BoW) is a technique to extract features from a text. In the model,

the features are the unique words in the document, represented as a vector (aka a

list) of numbers. The length of the vector, that is the number of dimensions, is the

length of the vocabulary (list of unique words). It relies on the idea that similar

documents contain similar words. Further, from the content of a document, it

is possible to understand the meaning of the document. Any information about

the order or structure of words in the document is discarded. The model is only

concerned with whether known words occur in the document, not where in the

document, this is why is called bag. The representation involves two things: a

vocabulary and a word frequency measure. Depending on the way to calculate

the frequency measure, we can identify different kinds of Bag of Words, explained

as follows.

2.1.1 One-Hot Encoding

Each document will be represented as a vector of words, where the frequency

measure is given by a boolean value: 0 if the word is absent, 1 if it is present.

To better understand the mechanism, let’s consider an example. Citing Brownlee

[Brownlee, 2017, p. 64], here are the first lines of the book “A tale of two cities”

by Charles Dickens.

It was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness

We will treat each line as it was a separate document. The vocabulary is made of

unique words, lowercased and without punctuation:

[it, was, the, best, of, times, worst, age, wisdom, foolishness]

The corpus contains 24 words but our vocabulary is only size 10. The size of the

vocabulary will be the dimension of the vector. To mark the presence of a word

we will use boolean values: 0 is absent, 1 if present. The resulting vectors are

shown in table 2.1.
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Table 2.1: One-Hot documents’ vectors

Vectors it was the best of times worst age wisdom foolishness

1 1 1 1 1 1 1 0 0 0 0

2 1 1 1 0 1 1 1 0 0 0

3 1 1 1 0 1 0 0 1 1 0

4 1 1 1 0 1 0 0 1 0 1

2.1.2 N-gram model

A way to simplify the vectors is to group a certain number of words in a single

dimension. In this case, a word is called a gram and so, if we consider two words

at once, we are using bigrams. The general approach is called the n-gram model,

where n refers to the number of grouped words. For example, the bigrams of the

first sentence in the previous section are

[it was, was the, the best, best of, of times]

A n-gram approach has been shown to works better than a 1-gram bag of words

approach given its improven ability to capture structure [Goldberg, 2017, p. 75].

2.1.3 Frequency vectors

This representation works like the one-hot encoding, but instead of boolean val-

ues, we use discrete numbers. In this case, 0 stands for a word not in the doc-

ument, while a specific number represents the number of times that word is re-

peated in the document. To understand the approach with an example, let’s con-

sider the following sentences:

Alice likes watching TV. Bob doesn’t like watching TV.

Bob loves watching movies.

The vector representation of the sentence is shown in table 2.2.

Table 2.2: Frequency vectors

Sentence alice like watch tv bob do not movie love

1 1 2 2 2 1 1 1 0 0

2 0 0 1 0 1 0 0 1 1
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One problem with this representation is that language contains a big amount of

words that are very common but that do not contain much information. It is the

case of words like the, do, not, a, some, among others.

2.1.4 Term Frequency/Inverse Document Frequency

As we saw before some words like articles, negative particles, auxiliary verbs,

are very frequent but convey low information. In addition, it is highly proba-

ble that long documents contain more repetitions of the same word, compared

to short documents. To solve the situation, Term Frequency/Inverse Document

Frequency [Jones, 1972, Ramos, 2003] is a method to normalize the frequency of

tokens. In the method, the importance of a word is directly proportional to the

number of times a word appears in the document but is offset by the number of

documents in the corpus that contain that word and the length of each document.

The mechanism works with two definitions:

• Term Frequency (TF): is a scoring of the frequency of the word in the current

document.

TF(t) =
number o f times term t appears in document

total number o f terms in the document
(2.1)

• Inverse Document Frequency (IDF): is a scoring of how rare the word is

across documents. The rarer the term, the higher is the IDF score.

IDF(t) = loge
total number o f documents

number o f documents with term t in it
(2.2)

It results that:

TF-IDF = TF * IDF

This time, in the document vector, instead of the boolean or counted value, for

every term we insert the TF-IDF score.

In all these representations, every new word added to the vocabulary becomes

a new dimension in the vector. We can foresee that the bigger the vocabulary, the

higher the number of dimensions. If we take into account a large corpus, it results
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that we will have vectors of thousands or millions of dimensions. As a logical

consequence, the higher the number of dimensions, the more challenging their

management. This is what is called the “curse of dimensionality”. Furthermore,

the vectors contain lots of zero scores, called a sparse vector or sparse representa-

tion. Sparse vectors require a lot of memory and computational resources, with a

very low optimization.

To decrease the number of dimensions to improve the performances, there

exist various techniques: ignoring case, ignoring punctuation, ignoring very fre-

quent words that do not contain much information (called stop words), fixing mis-

spelled words, reducing words to their stem [Brownlee, 2017, p. 65]. For exam-

ple, the sentence Yesterday, we were eating some delicious cookies. will result in the

following vocabulary:

[yesterday, eat, delicious, cookie]

In addition, an obvious limitation of these approaches is that they do not en-

code any idea of meaning or word similarity into the vectors. For this reason, we

will move on with other representational models, seeking if they can solve our

problem.

2.2 Understanding Word Embeddings

2.2.1 The mechanism

To prepare the ground for a full understanding, let’s start with a simple example.

Image we are trying to describe three rectangles as in this figure:

A B C

We could describe each rectangle with two values: height and width.

A (5,10); B (4,7); C (10,10)

Let’s symbolize each rectangle as a vector in two dimensions:
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C

Height

Width

A
B

The vector space (a collection of vectors) allows us to represent the vectors’

features (but this is something we could do even with the previous methods). The

usefulness of such representation comes when we want to compare two vectors.

If we would want to find the most similar rectangle to A, we could use the cosine

measure of the angle between two vectors, defined as follows:

let a and b two vectors, θ their angle, then:

cos(θ) =
a · b

||a|| · ||b|| (2.3)

The cosine value ranges from 1 for vectors pointing in the same direction, through

0 for orthogonal vectors, to -1 for vectors pointing in opposite directions [Jurafsky

and Martin, 2000, p. 11]. In our case, the vector with the higher cosine would be

B, as we could notice graphically.

2.2.2 Representing words

Likewise, we can represent a word via a real-valued vector, but this time the

number of dimensions would not be two. We would have to deal with a high-

dimensional space, of about hundreds of dimensions, barely impossible to imag-

ine in a vector space. A good thing is, though, that cosine similarity still works,

since it works with any number of dimensions. In addition, we are dealing with

vectors of hundreds of dimensions in contrast to the thousands or millions of

dimensions required for sparse word representations, such as a one-hot encod-

ing [Brownlee, 2017]. Computationally speaking, it has been proven that the ma-

jority of neural network toolkits do not play well with very high-dimensional,

sparse vectors and benefit of dense representations [Goldberg, 2017]. Represent-

ing words as low-dimensional dense vectors requires the classifiers to learn far
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fewer weights than if we represented words as high-dimensional vectors, and the

smaller parameter space possibly helps with generalization and avoiding overfit-

ting [Jurafsky and Martin, 2000, p. 17].

The distributed representation is learned based on the usage of words. The

idea of vector semantics is to represent a word as a point in a multidimensional

semantic space that is derived from the distributions of word neighbors [Jurafsky

and Martin, 2000]. This allows words that are used in similar ways to result in

having similar representations. This can be contrasted with the representation

in a bag of words model where different words have different representations,

regardless of how they are used [Brownlee, 2017].

The theory is the distributional hypothesis proposed by Harris in 1954. The

paradigm states that “words that occur in similar contexts tend to have similar

meanings” [Harris, 1954]. The theory has been revived by the idea of Firth (1957)

by which:

You shall know a word by the company it keeps [Firth, 1957, p. 11]

To explain the concept, let’s consider an example:

The dog is eating the food.

The cat is eating the food.

Looking at these two sentences, we can say that dog and cat are two words that

convey similar meanings, given the fact that they can appear in the same context.

Moreover, if the model could have the notion of is eating, it would understand

that dog and cat are two living creatures, just because they are followed by an

action verb.

Let’s see another example.

Let’s go get a xxxxx or something.

If you don’t know how to make a homemade xxxxx, you’ve come to the right place.

I’ll take a xxxxx and fries.

In this case, we do not know which is the missing word. Perhaps, xxxxx could be

a new English word. Nevertheless, we can for sure guess that this new word is a

food.
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2.2.3 Obtaining word vectors

But, how do we obtain word vectors? We first need input data, which in our case

will be a big quantity of text data. Fortunately, the only constraint in the input

data is that we need plain text. This allows us to dispose of huge quantities of data

effortlessly and is the main reason why models relying on word embedding have

such great success. The specific steps to obtain word vectors are the distinctive

features by which we differentiate models.

There are two main categories to distinguish: static embeddings and dynamic

or contextualized embeddings. With static embeddings, methods learn one fixed

embedding for each word in the vocabulary. It is called context independence, in

the sense that if a word assumes a different meaning depending on the context,

the model combines all the different senses of the word into one vector. So, for

example, in the sentence “He went to the prison cell with his cell phone to extract

blood cell samples from inmates”, where the word “cell” has different meanings

based on the sentence context, the model just collapses them all into one vec-

tor. With dynamic embeddings, on the other hand, the vector for each word is

different in different contexts. In the previous example, we would have three

different “cell” vectors depending on the context [Jurafsky and Martin, 2000]. In

the first case, we only need the word embeddings to perform our tasks. In the

second case, instead, it is usual to take into consideration the model itself to be

fine-tuned for the specific task it is needed [Rajasekharan, 2020].

Given the task we will perform and explain in the following chapters, we will

only need a word embedding for a single word, collapsing all word meanings into

a single representation. For this reason, the models we will explain subsequently

belong only to static embeddings.

2.3 Word2vec

The Word2vec model was developed by Tomas Mikolov, et al. at Google in

2013 [Mikolov et al., 2013a]. The intuition of Word2vec is that instead of counting

how often each word w occurs near a certain word c, we will train a classifier on a

binary prediction task: “Is word w likely to show up near c?” We do not actually
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care about this prediction task; instead, we will take the learned classifier weights

as the word embeddings. As anticipated, the revolutionary intuition is that we

can just use running text as implicitly supervised training data for such a classi-

fier; a word w that occurs near the target word c acts as gold “correct answer”.

This method, called self-supervision, avoids the need for any sort of hand-labeled

supervision signal [Jurafsky and Martin, 2000, p. 17-18].

The model is in the form of a shallow neural network, with one input, one

output, and one hidden layer. Each word in the vocabulary has two different

representations of dimension equal to the number of neurons in the hidden layer.

The input words are fed into the input layer, and the network is trained using a

regular back-propagation algorithm to output the target word. We will study this

process deeply below.

The first thing to prepare is the corpus. Once we have the input corpus, we

will set a window, which is a number of considered words. Through all the cor-

pus, we will have to slide this window, considering step by step different words.

To better understand the mechanism, let’s look at the example proposed by Alam-

mar [Alammar, 2019].

Let’s consider the following sentence:

Thou shalt not make a machine in the likeness of a human mind

If the window size is 3, we will consider the first three words, where the two

initial terms will be labeled as input and the third as output. The mechanism is

shown in figure 2.1.

Figure 2.1: Mechanism of the sliding window, part 1 [Alammar, 2019]

Then, we will move to the second set of three words, as shown in figure 2.2.

Subsequently, we will continue until the end of the text, obtaining a big amount

of inputs and outputs words. These labeled words will later be used to train the

language model.
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Figure 2.2: Mechanism of the sliding window, part 2 [Alammar, 2019]

In the example, we considered a three words window, looking at the target

word and at its two preceding words. So, for example, in the sentence:

John was taking a

where the target word is photo, we could propose the words nap, shower, photo,

and more. What if we took into account the following words also?

John was taking a photo

in this case, we would guess that the missing word is likely to be beautiful, and

we know for sure that the missing word cannot be photo. Taking into consid-

eration the following word lets us improve the knowledge we previously had.

Accounting for both directions leads to better results in comparison to only one

direction.

There exist two training architectures to approach the problem: Continuous

Bag of Words (CBOW) and Skip-gram.

2.3.1 CBOW

In the CBOW architecture, given a set of context words, we try to predict the

target word. Figure 2.3 well represents the mechanism.

Figure 2.3: CBOW architecture example [Alammar, 2019]

As explained above, every row of inputs and outputs will form the dataset to

train the model. In this example, we have four input words for every output.
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2.3.2 Skip-gram

In the Skip-gram architecture, given an input word, we try to predict the sur-

rounding context. This time, in the example, we have four input words and four

output words. As result, with this mechanism, we obtain a much bigger dataset,

that will slow the training process but hopefully improve the results.

Figure 2.4: Skip-gram architecture example. The pink boxes are in different shades because this sliding

window actually creates four separate samples in the training dataset [Alammar, 2019]

A side effect of this architecture is that when training the model with the pair

[In: “red”, Out: “by”] we are saying that the output “bus” is wrong. Conversely,

when training the model with the pair [In: “red”, Out: “bus”] we are saying

that the output “by” is wrong. We are penalizing the model unfairly, telling it to

adjust for words that actually appear as if they did not. To solve the issue, we

should have enough data in order to make up for those incorrect adjustments,

converging to a trade-off probability [Norris, 2018].

2.3.3 From Neural Network to Logistic regression

So far, we described the mechanism as a neural language model where the pur-

pose is to predict the target of the context words. The idea of Word2vec is to

switch to a logistic regression model, simplifying and speeding up the calcula-

tion.

This switch requires we change the structure of the dataset: the label is now a

new column with values 0 or 1. They will be all 1 since all the words we added

are neighbors as we can see from figure 2.5.

To avoid obtaining a model that always returns 1, showing zero learning, we

need to introduce some negative samples, meaning, words that are not neighbors.
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Figure 2.5: Changed dataset for logistic regression. [Alammar, 2019]

To add negative samples, we keep the same input word, putting a random word

labeled as 0 as a new entry in the dataset.

2.3.4 Training process

Before the training process starts, we determine the size of our vocabulary and

the size of the embedding (number of dimensions of the vectors).

At the start of the training phase, we have two matrices: an embedding matrix

and a context matrix. These two matrices have an embedding for each word in

the vocabulary, so the dimensions of the matrices are

dimension o f the matrix = size o f vocabulary× size o f embeddings (2.4)

The model starts initializing randomly the matrices. Given the input word,

it considers the embeddings for the word itself and the context, composed of

both positive and negative examples. Subsequently, it calculates the similarity

between the input and output embeddings using the dot product. These values

are then processed by a sigmoid function which transforms them in the range [0;

1]. The sigmoid value is the model prediction. We can compare this prediction

with the real value, calculating the error value. This error value can be used to

adjust the embeddings. We repeat this process to input every word in the dataset.

Every repetition of the process is said to be an epoch. After a certain number

of epochs, we expect the model to have the best possible word vectors in the

embedding matrix. Figure 2.6 by Alammar summarizes the process [Alammar,

2019].

32



Figure 2.6: Training process of the language model [Alammar, 2019]

2.4 GloVe

The GloVe algorithm was created by Pennington et al. at Stanford in 2014 [Pen-

nington et al., 2014]. GloVe, short for Global Vectors, “is a word vector represen-

tation method where training is performed on aggregated global word-word co-

occurrence statistics from the corpus” [CR, 2020]. It is a count-based model that

tries to show that it is possible to use matrix factorization methods3 to keep the

statistical co-occurrence data while being able to capture the meanings of words.

It is, in a certain way, an improvement of the bag of words model with the ad-

dition of the words’ meaning feature. It was motivated by the idea that context

window-based methods suffer from the disadvantage of not learning from the

global corpus statistics. GloVe is able to capture the relationships between words

by using the ratios of their co-occurrences with other words [Brich, 2018]. In other

words, GloVe looks at how often a word w1 that appears in the context of a word

w2 within all the corpus of texts.

Rather than using a window to define the local context (local context window

methods are CBOW and Skip-gram), GloVe constructs an explicit word-context

or word co-occurrence matrix using statistics across the whole text corpus. Pen-

nington et al. state that training multiple instances of a neural network and then

combining the results can be less prone to over-fitting and can improve the per-

formance for certain types of neural networks. The resulting embeddings are

3A matrix factorization is a way of reducing a matrix into its constituent parts.
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constructed by summing the matrices.

2.5 fastText

FastText is a library created by Bojanowski et al. at Facebook in 2017 for effi-

cient learning of word representations and sentence classification [Bojanowski

et al., 2017]. FastText is considered an extension of Word2vec which enriches the

word embeddings with character-level information. It can use either Skip-gram

or CBOW architectures.

Bojanowski’s team considers ignoring the morphology of words a limitation,

especially for languages with large vocabularies and many rare words. Many

word formations follow rules, making it possible to improve vector representa-

tions for morphologically rich languages by using character-level information.

FastText proposes a new approach with respect to this.

As opposed to Word2vec, which treats each word as an atomic entity, fastText

represents each word as the word itself, plus a bag of character n-gram, and two

special symbols < and > at the beginning and end of words. N-gram means that

the size of the sub-word is of length n characters, counting < and > as a character.

For example, the representation of the word where with n= 3 is:

<where>, <wh, whe, her, ere, re>

It is important to note that the sequence <her>, corresponding to the word her is

different from the tri-gram her from the word where.

When calculating the word embedding, the representation is given by the sum

of each n-gram embedding, where each n-gram representation is calculated as

previously seen for the Word2vec model.

This model allows sharing the representations across words, thus allowing to

learn representation for rare words that are better in comparison with the other

models. In the case of fastText, even if words are rare their character n-grams are

still shared with other words, having a significant number of neighbors, while for

Word2vec a rare word has only a few neighbors.

Moreover, if a word is not present in the vocabulary, its representation is given

by the sum of its n-gram vectors. Likewise, the word aquarium can be split into
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<aq, aqu, qua, uar, ari, riu, ium, um>

As the model encounters the word aquarius, it might not recognize it. Of course,

the two words share many n-gram parts, so the model can embed aquarius near

aquarium.

Given its robustness to infrequent missing words, the model is also more ro-

bust to the size of the training data. It has been proven that adding more data

does not always lead to improved results. The proposed approach provides good

word vectors even when using very small training datasets [Bojanowski et al.,

2017]. This can be seen in figure 2.7. The performance of the fastText model on

only 1% of the Wikipedia corpus has a correlation coefficient of 45, which is better

than the performance of CBOW trained on the full dataset (43).

Figure 2.7: Influence of the size of the training data on the performance on a word similarity task (English

RW dataset).

Abbreviations are used: sisg : Subword Information Skip-Gram corresponds to the fastText algorithm, sisg-

the out of vocabulary words are replaced with zero vectors, cbow : cbow model [Bojanowski et al., 2017, p.

7]

To summarizing, the advantages of fastText over Word2vec are:

• It generates better word embeddings for rare words.

• It can generate embeddings for out-of-vocabulary words

• The algorithm is more robust towards the size of the training data

• It can be faster to learn

These properties are precisely the reason why we chose the fastText model over

Word2vec and GloVe.
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2.6 Verify the linguistic knowledge

Based on what we explained so far, we can represent each word as a multi-

dimensional vector, and be able to extract information from these representations.

In doing so, we do not know what each dimension codes for, but we can test prac-

tically if the representation works. In fact, it is the only way to test if the model

learned word meaning.

Since the quantity of dimensions does not allow representing the vector in

a Cartesian plane, to try to visualise the environment, the embeddings have to

undergo a dimension reduction, with unavoidable data loss. Figure 2.8 shows an

example of vector space obtained by Word2vec. In the figure, we can notice how

related words are closer in the space.

Figure 2.8: Simplification of the vector space. Credits: https://towardsdatascience.com/

mapping-word-embeddings-with-word2vec-99a799dc9695

We will exploit the graphical example of Alammar [Alammar, 2019]: given a

50-dimensional vector representing the word “king”, each value is in a range [-2;

2], where a color from red to blue shows the number in a graphical way (figure

2.9).

Comparing different vectors (figure 2.10), we can notice how words that in-
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Figure 2.9: Vector of the word “king” in color range [Alammar, 2019]

Figure 2.10: Vectors of the words “king”, “man” and “woman” in color range [Alammar, 2019]

tuitively are close in meaning correspond to similar vectors. Indeed, the vectors

for “man” and “woman” are more alike with respect to the vector of the word

“king”.

Another way to show the working of the system is the analogy task. In this

assignment, we can add and subtract word embeddings and obtain a reasonable

result. The most famous example is shown by the formula:

king - man + woman = queen

The fastText tutorial page 4 offers the example with the words:

berlin - germany + france = paris

Again, another common task is finding the nearest neighbors, which are the clos-

ing words in the vector space. For example, the 10 top nearest neighbors of the

word “asparagus” are:

beetroot 0.812384

tomato 0.806688

horseradish 0.805928

spinach 0.801483

licorice 0.791697

lingonberries 0.781507

4FastText tutorial page: https://fasttext.cc/docs/en/unsupervised-tutorial.

html

37



asparagales 0.780756

lingonberry 0.778534

celery 0.774529

beets 0.773984

In our case, to verify the linguistic knowledge acquired by the model, we will

test it on a linguistic task, namely the colexification phenomenon. We will explain

the issue in the next chapters.
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Chapter 3

Setting up the research problem

In this chapter we will set up the research problem (section 3.1), and explain why we

decided to address it (section 3.3). We will heavily rely on the study of Yang Xu et al.

on colexification, written in the paper “Conceptual relations predict colexification across

languages” [Xu et al., 2020a], analyzing how they developed their analysis (section 3.2).

Lastly, we will also describe the development plan to follow in the next chapters and

phases of work (section 3.4).

3.1 Problem

The phenomenon under investigation is colexification:

A given language is said to colexify two functionally distinct senses if,

and only if, it can associate them with the same lexical form [François,

2008, p. 170]

It is not difficult to find cases that illustrate the situation, for example, the

Italian word “dito” means both finger and toe while the English word “uncle”

could mean mother’s brother, father’s brother or aunt’s husband.

It is not clear where colexification originates: is it a case of metaphor, metonymy,

hyperonymy, analogical extension or other phenomena? Does it derive from a

historical change? Is it influenced by the geographical situation of the speakers?

François’ idea is that if two words colexify in at least one language, the brain has

identified a semantic connection between the meanings [François, 2008, p. 172].
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Anyway, finding the exact reason why colexification happens and which are the

trigger factors is an unresolved issue whose development goes beyond the scope

of this project.

Under the assumption of François, two similar concepts are more expected

to be conveyed through a single term with respect to two concepts pertaining

to completely different fields. For example, the Italian word “dito” conveys two

similar meanings: “finger” and “toe”, that is “any of the five separate parts at the

end of the foot/hand”. At the same time, to avoid incurring in communication’s

misunderstandings, two concepts that are very related in meaning with a high

probability use distinguished lexemes (this is the case, for example, of “brother”

and “sister” [Regier et al., 2016]). In other words, semantic closeness between the

meanings is a necessary but not sufficient condition to have cases of colexification.

The term avoids distinguishing between polysemy, homonymy, vagueness or

other similar concepts keeping the mechanism very simple. Specifically, it is said

that colexifications covers both polysemy and homonymy [Pericliev, 2015, p. 72].

Pericliev defines homonymy as the result of mere chance coincidence or merging

of forms of distinct words, while polysemy as the result of real semantic changes,

revealing general cognitive processes or culture-specific semantic associations.

To distinguish a colexification as a case of polysemy or homonymy is a complex

problem, that should be solved individually in each observed case in a specific

language. Pericliev proposes two examples to understand the issue. The Mod-

ern English words arms “upper limbs” and arms “weapons” are homonyms be-

cause in Middle English they were distinct words: the word for upper limbs with

the form earmes (from Old English earm) and that for weapons armes (from Old

French arme). Some phonological processes converged them to a single modern

form, but whether or not these processes would change the distinct word-forms

to an identical form is a fact of purely coincidental nature. In contrast, Modern

English arm, meaning either “upper limb” or “a support (as on a chair) for the

elbow and forearm” is a single polysemous word in which the first meaning de-

veloped (via metaphor) into the second. For the purposes of this thesis, we will

not treat polysemy, homonymy and colexification as three different phenomena,

but rather, we will consider both polysemy and homonymy as colexifications.
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Moreover, in the definition of colexification it is not specified whether the two

words should be synchronous, that is pertaining to the same chronological ver-

sion of the language. For example, it may happen that a certain word form has a

meaning in one age and acquires a new meaning in the following period. Any-

way, since we can consider two diachronic varieties as two full-fledged separate

languages, it follows that the terms should belong to the same chronological stage

of a language. However, this is a personal choice.

To shed some light on the problem and understand where the focus is, we

will consider the work of Xu et al. [Xu et al., 2020a]. The approach of Xu and col-

leagues is to take into account various languages and try to infer linguistic pat-

terns. Indeed, some colexifications have been proven to be more frequent than

others (this is the case of “fire” and “flame”). Their consequent hypothesis is that

cross-linguistic variation in colexification frequency is non-arbitrary and reflects

a general principle of cognitive economy. Specifically, “the observed gradient of

colexification probability across languages tracks the strength of conceptual relat-

edness in language users’ minds” [Xu et al., 2020a]. As consequence, meanings

that require less cognitive effort to relate should be more likely to be colexified.

The key factor to stress, following these statements, is that it should be pos-

sible to predict if and how much a pair of concepts colexify using only their se-

mantic closeness, keeping in mind that this is not the only factor which triggers

colexification.

There are many different ways to operationalize semantic closeness, depend-

ing on the chosen model. In this case, the semantic closeness is defined as cosine

value between the word embeddings in the vector space. We will study how Xu

et al. operationalized the similarity and verified the hypothesis.

3.2 Xu et al.’s Approach

3.2.1 Data used

To verify their hypothesis, Xu et al. collected linguistic data. The material used

was obtained from the database “Intercontinental Dictionary Series (IDS)” [Borin

et al., 2013], which contains 1310 entries of meaning organized into 22 semantic
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domains and identified by one or a few English words. English is the language

used as a reference for annotating meanings in the database. This constitutes

a limit but is a necessary step to make meanings comparable. It follows that a

concept, expressed in some language by a single word, could be annotated in

the database as a multi-word entry. When using English as a meta language,

sometimes there is the need of multiple words because English does not lexicalize

a single word expression for that meaning (or colexifies them; e.g., the “uncle”

example above). For example, the Italian words “svegliarsi” and “banano” are

translated respectively into the English terms “wake up” and “banana tree”. They

decided to restrict the set of examined colexifications to concepts expressible in

single word forms in English, at the level of granularity provided by the IDS

database. Moreover, since English is the meta-language, the English entries were

not considered.

The original database is composed of 453 975 data points where, as previously

written, the number of concepts is 1310. The initial number of languages was

329, while the number of families was 60. Some of the languages have identi-

cal 3-letter ISO language codes in the IDS, for this reason, they decided to work

with the set of languages that have uniquely identifiable ISO codes according

to Glottolog [Hammarstrom et al., 2020], leaving 246 languages of 41 language

families, 5 climate categories and 5 geographical regions. Xu’s team did not re-

move diachronic varieties, keeping old languages like Ancient Greek, Latin, Old

Prussian [Xu et al., 2020b]. The data draws on a subset of the world’s language

families and has uneven representations from the language families (e.g., Indo-

European is more represented than other language families) [Xu et al., 2020a, p.

10].

For each language, they searched for colexifications where two concepts share

the same word form. At this point, they had available a data frame of colexifica-

tions distributed through linguistic families, climate categories and geographical

regions.

Afterward, they calculated the frequency of colexification for each possible

concept pair controlling separately depending on family, climate and geography.
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For every group, they performed stratified bootstrapping with replacement 1, re-

peating the bootstrap 1000 times. After this process, they obtained an aggregated

estimate of the colexification frequencies across all language families. [Xu et al.,

2020b, p. 5-6].

In addition to the stratified bootstrapping procedure, they also used Monte

Carlo simulation [Everett et al., 2015]. Such a procedure allows only a single

language to be sampled from each of the 41 language families so that families

over-represented in the IDS database (such as Indo-European family) would be

treated equally in sample size as those families with fewer languages. As for

the stratified bootstrapping, they generated 1000 rounds of Monte Carlo sampled

colexification matrices for analyses of all the language families [Xu et al., 2020b, p.

8].

3.2.2 Measures of conceptual association

They considered some variables of conceptual relatedness and used these vari-

ables to perform three tasks:

• Show that the variables can distinguish between colexification patterns that

are attested and those that are unattested

• Show which variable best predicts which concepts are more frequently colex-

ified

• Show how the degree of associativity recapitulates the gradient of colexifi-

cation frequency

The considered variables are associativity, similarity, usage frequency, con-

creteness and emotional valence. Associativity is the expected probability with

which a person will associate one word with another word (one or a set of seed

words is presented to a participant who responds with the first word that comes

to mind, obtained using Human Brain Cloud HBC 2 association game and Uni-

1The bootstrap is a method for estimating the distribution of an estimator or test statistic by

re-sampling one’s data [Horowitz, 2001]. With replacement mechanism, one entry can be selected

more than once.
2https://www.humanbraincloud.com/
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versity of South Florida USF [Nelson et al., 1998] word association esperiment.

Similarity is given by the standard cosine distance between word embeddings of

two concepts (i.e. their distributional similarity), obtained by a word embedding

model. Usage frequency is the average frequency obtained by the frequency of

words in the Google Book English corpus [Michel et al., 2011]; while concreteness

and emotional valence are values obtained by human ratings [Brysbaert et al.,

2013]. For the present purposes, we will only pay attention to similarity because

it is the one obtained by a computational linguistic model.

To operationalize the concept of similarity, the team opted for scalable vector-

based models, in particular, Word2Vec embedding [Mikolov et al., 2013a,Mikolov

et al., 2013c] in its pre-trained version 3.

In doing so, for a given pair of concepts, they took the standard cosine distance

between the word embeddings of those concepts, obtaining a numerical value.

3.2.3 Tasks implementation

To solve the first task, for any pair of the IDS concepts, the logistic regression

model predicts whether it should be colexified or not in any of the languages.

In other words, they reduced the problem to binary classification. The data was

split into two groups: attested, defined as pairs of colexified concepts attested in

at least two languages, and null, defined as pairs of concepts that are attested for

one or none of the languages in the set. They applied a 10-fold cross-validation4,

where 10% of the data was the test set, keeping the remaining 90% as training

data. Because there are many more pairs in the null group than in the attested

one, they balanced the data by sampling from the null group and equating the

sample size to that of the attested group. To evaluate the variables, they per-

3https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
4Cross-validation is a technique to evaluate predictive models by partitioning the original sam-

ple into a training set to train the model, and a test set to evaluate it.

In k-fold cross-validation, the original sample is randomly partitioned into k equal size sub-

samples. Of the k sub-samples, a single subsample is retained as the validation data for testing

the model, and the remaining k-1 subsamples are used as training data. The cross-validation

process is then repeated k times (the folds), with each of the k sub-samples used exactly once as

the validation data [Vanschoren, 2021].
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formed a logistic regression analysis.

The variables that capture conceptual relations (associativity and similarity),

performed well above chance (50%). In particular, similarity obtained a value

near 80% of predictive accuracy. Figure 3.1 shows how the measures performed.

Figure 3.1: Cross-validated predictive accuracies in classifying colexified versus non-colexified sense pairs

from individual variables and variables in combination, using logistic regression. Abbreviations are used

for the following variables: Assoc : Associativity, Sim : Similarity, Met. (Conc.) : Metaphoricity (Con-

creteness), Met. (Val.) : Metaphoricity (Valence), Freq. : Frequency [Xu et al., 2020a].

The second set of analyses goes beyond binary predictions. Specifically, they

evaluated how well each variable accounts for cross-linguistic variability in how

frequently pairs of concepts are colexified.

To evaluate the results, they correlated the variables against colexification fre-

quencies, i.e. the number of times a pair of words is a colexification in any of the

languages; showing how among all, associativity best correlates with the cross-

linguistic frequency of colexification. Similarity is the second-best variable, with

a Spearman’s p-value of 0.225. Figure 3.2 shows the correlations between the

measures and the colexification frequencies in the family-controlled set.

Finally, they examined the relationship between the orders of association of

two concepts and the cross-linguistic frequency of their colexification. Until now,

the team studied a direct association of two concepts, but it is conceivable that

5Citing Wikipedia: “In statistics, Spearman’s rank correlation coefficient or Spearman’s p, is a

non-parametric measure of rank correlation (statistical dependence between the rankings of two

variables). It assesses how well the relationship between two variables can be described using a

monotonic function.”
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Figure 3.2: Results of variable correlations with colexification frequencies across languages. Abbreviations

are used for the following variables: Assoc : Associativity, Sim : Similarity, Met. (Conc.) : Metaphoricity

(Concreteness), Met. (Val.) : Metaphoricity (Valence), Freq. : Frequency [Xu et al., 2020a].

colexification may also happen between indirect association. The described ex-

ample is a possible colexification between “bird” and “sap” where the connecting

term is “tree”. Under this assumption, pairs that are more remotely associated

should be less likely to enter the lexicon, compared to those that are more di-

rectly associated. In this case, given that the only variable in use is associativity,

we will not delve into the development. In a nutshell, the frequency of colexifi-

cation shows a monotonic decrease as the order of association increases.

3.3 Results and discussion

In all three tasks, the results lead support to the initial hypothesis of a positive

relationship between semantic closeness and the emergence of colexification.

Through the whole paper, Xu et al. established the importance of concep-

tual relations in colexification processes. The three phases of work suggest that

conceptual relations are central to predicting whether a pair of concepts will be

colexified in a language and how frequently they will tend to colexify. The out-

come is a reflection of cognitive economy, verifying the initial statement of the

key constraint of conceptual relatedness in colexification processes.

The work of Xu’s team was successful: they were able to test the hypothesis

and verify the theory. There are different ways to operationalize semantic close-
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ness, among which. Xu et al. look at associativity and word-embedding based

similarity. However, their choices instantiate just one of many ways of codify-

ing associativity and similarity. It is an open question whether other ways of

operationalizing distributional similarity will fare better or worse. In replicating

their work, we will try other ways to operationalize semantic relatedness. Our

focus is on Natural Language Processing models, for this reason, we will only

concentrate on the variable of distributional similarity using another model (not

Word2vec but fastText) and seeing how the results change. Additionally, besides

the pre-trained version of the model, we will train our own models, changing

the parameter of window size whose effect is on the dimension of the context

window.

In conclusion, it is necessary to highlight that the main goal of the project is

not to replicate or outperform the studied work, even if we do perform a de-

tailed replication of an aspect of their analysis. The real purpose is to analyze

the colexification phenomenon through a computational model of Natural Lan-

guage Processing, carrying out all the phases of work (from the data collection to

the discussion of the results), taking care of an aspect that in the studied paper

was not touch: model training and hyper-parameters selection, with a particular

emphasis on the dimension of the context window.

3.4 Development plan

The following section describes the phases of work, foreshadowing the steps that

will be carried out in chapters 4 and 5.

3.4.1 Data used

To start to replicate Xu’s team work, we need to collect linguistic data. The cho-

sen database is CLICS3 [Rzymski et al., 2020], which aggregates multiple data

sets, including the IDS database used by Xu’s team. In this way we are able to

follow their reasonings, expanding the amount of data used. To give the idea, the

number of considered linguistic varieties improved from 246 to 2990. The CLICS

database structure will contain linguistic forms, expressed concepts, linguistic va-
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rieties, linguistic families, but no colexifications. To obtain a set of colexifications

it will be necessary to pre-process the available data.

We will dive into the data understanding part, laying the foundations for the

data cleaning step. After the data cleaning phase, we will prepare the linguistic

concepts to obtain a colexifications data frame.

Following the logic argued by Xu et al., we will perform a bootstrap, reducing

the number of bootstrapped samples from 1000 to 100. After that, we will calcu-

late the probability of a concept pair to be a colexification, in a similar fashion as

Xu and colleagues did to compute their frequencies.

3.4.2 Measure of conceptual association

We will use a model of distributional similarity as well. The idea is that it will be

possible to predict that concepts that are used in more similar linguistic contexts

should be more frequently colexified across languages, that is, colexified with a

higher probability. The measure of conceptual association that we will take into

consideration is similarity, obtained by the fastText model (contrary to Word2vec

model used by Xu’s team). For the first phase of analyses, the model in use will

be the pre-trained one [Grave et al., 2018].

Changing the model differentiates the two works in the biggest way. In fact,

if we had decided to continue working with Word2vec, the innovation points

would have been too limited. FastText is undoubtedly a less studied and known

model but has few positive aspects that separate it from other models. The two

main being its speed in training (hence the name) and its ability to compute word

representations for words that did not appear in the training data [Bojanowski

et al., 2017]. Using the fastText model allowed me to study a less used model,

able to grasp sub-word information. By the way, the fact that it is not famous

as the Word2vec model had some side effects. For example, the availability of

documentation is shallow with respect to Word2vec, resulting in more challeng-

ing research for the model structure and understanding of the mechanism. The

phase of troubleshooting was naturally more demanding, having at disposal only

a few examples of use. For the same reason -the lack of examples-, the number

of decisions to take was greater than the one we would have taken when using a
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very popular model. On the other hand, the speed of training got us designing

a phase of model training from the beginning, making the whole project more

attractive and stimulating. In addition, using a less known model made me de-

velop several job-oriented skills such as problem-solving, decision making and

autonomy.

3.4.3 Predictive steps

We will propose few questions we want data to answer, namely:

• How well can the cosine similarity values help us in predicting whether two

meanings are highly colexified across different languages?

• How well can the cosine similarity values help us in predicting whether two

meanings are a colexification at all?

As Xu et al. did, we will set up the problem in a binary manner, being able to use

the logistic regression model. The algorithms that can solve a binary classification

problem are several, to name a few Naive Bayes, Decision Tree, Support Vector

Machine. Anyway, the Logistic Regression model is the baseline regarding binary

classification and is the one that combines high-performance results with a small

number of features. Indeed, in our case, we will only use the cosine similarity

values to obtain a predictive result.

The three main metrics used to evaluate a classification model are accuracy,

precision, and recall. Accuracy is defined as the percentage of correct predictions

for the test data.

Accuracy =
correct predictions

all predictions
(3.1)

Precision is defined as the fraction of relevant examples (true positives) among

all of the examples which were predicted to belong in a certain class.

Precision =
true positives

true positives + f alse positives
(3.2)

Recall is defined as the fraction of examples that were predicted to belong to a

class with respect to all of the examples that truly belong in the class.

Recall =
true positives

true positives + f alse negatives
(3.3)
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Accuracy is particularly informative when the classes are evenly distributed.

If the classes are unbalanced, accuracy could lead us to think we have a magnifi-

cent model when maybe that is not the case. For instance, if there is only one case

of colexification but 999 negative cases, then the model could generalize that all

the values are negatives. This would lead to an accuracy of 99,9%. Great, isn’t

it? The downside is that the model has not learnt anything about the problem

we were interested in. We could say that the performance is splendid, but what

if that single missed prediction is the one we care most? Precision and recall, on

the other hand, both verify the model has actually learned something, checking

both for overlooking and misclassification [Jordan, 2017]. In the example, both

precision and recall values would have been 0. In other words, precision and re-

call are more complete measures, but one does not include the other. Which one

to choose? F1 score comes in support of seeking a balance between precision and

recall.

F1 = 2 ∗ precision ∗ recall
precision + recall

(3.4)

When we will evaluate the results obtained from the logistic regression, we will

precisely use the F1 score value.

3.4.4 Training the models

Corpus

We will likewise perform a phase of model training. This stage will begin with

the download of the training corpus (selected as English Wikipedia), followed by

its cleaning according to the kind of data expected by the model. The Wikimedia

Foundation provides free and large text data that are expected to be reliable and

in (hopefully) correct English, giving its reliance on crowd control. However, the

corpus needs to be in plain text format, which means deprived of images, labels,

notes, comments, or other metadata.

Architecture

When training the fastText model, we can choose between two approaches: Skip-

gram or CBOW. The topic has already been studied in section 2.3, but will be
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briefly reviewed here for convenience.

Both are architectures to learn the underlying word representations for each

word by using neural networks. In the CBOW model, the training objective

is to combine the representations of surrounding words to predict the word in

the middle. Similarly, in the Skip-gram model, the distributed representation of

the input word is used to predict the context [Kulshrestha, 2019, Mikolov et al.,

2013b]. In both cases, the models involve a specific context (i.e. the surround-

ing words) whose dimension change dependently on the value of the hyper-

parameter, considering different number of neighbouring words. To illustrate

the difference, consider the following example from the fastText webpage:

Poets have been mysteriously silent on the subject of cheese

where the target word is silent. A Skip-gram model tries to predict the target

using a random close-by word, like subject or mysteriously. The CBOW model

takes all the words in a surrounding window, like been, mysteriously, on, the, and

uses the sum of their vectors to predict the target [Facebook Inc., 2020b]. The

model architectures of these two methods are shown in figure 3.3.

Figure 3.3: Graphical representation of the CBOW model and Skip-gram model [Mikolov et al., 2013b]

In practice, Skip-gram gives better word representations when the monolin-

gual data is small, while CBOW is faster and more suitable for larger datasets

[Mikolov et al., 2013a]. The Skip-gram and CBOW models can be trained on a

large corpus in a short time and tend to learn very similar representations for
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languages [Mikolov et al., 2013b]. To decide which model to use, we will try both

and choose the one with the higher performances.

Window size hyper-parameter

In the model training, we will probe the parameter of window size, keeping all

the other hyper-parameters with their default values. The window size param-

eter represents the dimension of the context window in the training phase. Our

goal is to see if the dimension has an effect on the logistic regression performance

and in that case, which is the best value to set.

Previous studies have already detected that the window size is a crucial fac-

tor that directly affects the word vector representations. This is because distri-

butional semantic models represent words through real-valued vectors of fixed

dimensions, based on the distributional properties of these words observed in

large corpora [Lison and Kutuzov, 2017]. Larger windows are known to induce

embeddings that are more topical or associative, improving their performance on

analogy test sets, while smaller windows induce more functional and synonymic

models, leading to better performance on similarity test sets [Goldberg, 2017].

Jurafsky and Martin [Jurafsky and Martin, 2000] state that shorter context win-

dows tend to lead to representations that are a bit more syntactic, since the infor-

mation is coming from immediately nearby words. When the vectors are com-

puted from short context windows, the most similar words to a target word tend

to be semantically similar words with the same parts of speech. When vectors are

computed from long context windows, the highest cosine words to a target word

tend to be words that are topically related but not similar.

Lapesa et al. focused on the paradigmatic vs. syntagmatic relations that hold

between words. Paradigmatic relations hold between words that occur in similar

contexts but that do not co-occur between them (for example, synonyms frigid -

cold and antonyms cold - hot. Syntagmatic relations hold between words that co-

occur and therefore exhibit a similar distribution across contexts. They tested the

model with a window size of dimensions 1, 2, 4, 8, 16. Their results show that

a very small context window (i.e., one word) is sufficient for all paradigmatic

relations [Lapesa et al., 2014].
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Another similar experiment was conducted by Lison and Kutuzov who dis-

covered that for a lexical similarity task narrow window size performs best, while

for analogy task larger context windows are usually beneficial (but not always!)

[Lison and Kutuzov, 2017]. They do not comment exactly which is the number to

choose, but they prove to have tested the model on window sizes 1, 2, 5, and 10.

Considering these studies, we can predict that the most accurate window size

to choose for our purpose will be narrow, but we cannot predict exactly which

size. This is because we assume colexification depends on similarity between

words. A model which best capture word similarity values, best predict cases

of colexifications. Looking at the previous studies, we are aiming to the best

paradigmatic and lexical similarity results.
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Chapter 4

Implementation and evaluation of

the project

Now that the development plan has been set up, the following chapter will explain the

implementation of the project, with its evaluation. In this chapter we will only use the

pre-trained version of the fastText model, leaving the customized versions of the model for

the next chapter.

The chapter will begin with a data management phase. Section 4.1 will explain how

to obtain the data, section 4.2 will look deeper into the data, trying to understand its

structure and meaning, while section 4.3 will clean the data, keeping only relevant infor-

mation.

Section 4.4 will explain the data management steps that include the creation of the

colexification data frame, the bootstrap process, and the calculus of probabilities associated

with each meaning pair.1

Section 4.5 will describe how we obtained the cosine similarity values for the colexified

meaning pairs using the pre-trained fastText model.

Section 4.6 will analyze the obtained probabilities and cosine similarity values and

study their distributions.

Section 4.7 will use the Logistic Regression model to answer two questions:

• How well can the cosine similarity values help us in predicting whether two mean-

ings are highly colexified across different languages?

1The data cleaning, bootstrapping and probabilities computations were coded with Lucı́a

Pitarch Ballesteros.
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• How well can the cosine similarity values help us in predicting whether two words

are a colexification at all?

Finally, section 4.8 will discuss the results obtained from the Logistic Regression with

this first pre-trained version of the model.

4.1 Data Collection

The data used is obtained from the online Database of Cross-Linguistic Colexifi-

cations, first published in 2014 and available for use in its third edition (CLICS3)

[Rzymski et al., 2020]. The CLICS project aims to provide free and transparent

linguistic data, allowing to investigate colexifications through global and areal

semantic networks. It is therefore the best source to collect the data for our pur-

pose.

The CLICS project aggregates various databases, allowing us to dispose of a

huge amount of data. In doing so, the CLICS team uniformed the entries estab-

lishing a standard way to record a word’s meaning.

As we will see in the next section, we do not have a ready-to-use list or table

of colexifications, which can be built by processing the data (see section 4.4.1).

The pre-processed CLICS data is readily available from a SQL database, from

the CLICS3 page on Github2. Our starting point is given by its conversion into a

more convenient CSV format.

The code performing this operation is in the file 00 DataCollection.ipynb.

4.2 Data Understanding

The raw file that contains the CLICS data is composed of 1 390 594 rows and 16

columns. Its structure is well depicted in table 4.1.

As anticipated, the data frame collects data from different databases. This

is why we have dataset IDs as well as columns that may sound redundant but

which are necessary to try to standardize the information (for example, Form vs

2https://github.com/clics/clics3
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Table 4.1: Explanation original raw data frame

Column Description # values bc # NaN # values ac

dataset ID name of the dataset 30 0 30

Form ID unique identifier of the

form

1 390 584 0 1 202 817

Form the concept, expressed

in its language

913 591 87 802 148

clics form the form, written in a

normalized manner

706 169 441 623 902

gloss in source the concept, expressed

in English, as written in

the original database

7260 64 676 6108

Concepticon ID unique identifier of the

concepticon

2919 0 2396

Concepticon

Gloss

the concept, expressed

in English, in a normal-

ized way

2919 0 2396

Ontological

Category

general category the

concept refers to

6 0 5

Semantic Field the subject the concept

refers to

24 108 24

variety language variety 3050 0 2990

Glottocode unique identifier of the

linguistic variety [Ham-

marstrom et al., 2020]

2279 19627 2238

ISO639P3code linguistic code 1845 206 325 1807

Macroarea macroarea of the variety 6 87 845 6

Family linguistic family of the

variety

201 22 090 201

Latitude latitude value 1850 226 992 1822

Longitude longitude value 1835 226 992 1803

# values bc : number of unique values before cleaning; # values ac : number of unique values
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clics form). Specifically, the column Form lists the word as it’s written or pro-

nounced in the original language. It’s the case of the word “face” present in

Italian both with faccia and as its phonetic transcription fat
>
tSa, even though the

correct way to write the word is “faccia”. As consequence, the column clics form

transforms the above entries in faccia and fattsa. As we see, the symbol
>
tS has

undergone an orthographic change. The phenomenon happens other times, for

example in the Hruso Aka Jamiri language, S@ and s@ were both transcribed with

the clics form s@. The two words, having two different meanings, will be later

considered a colexification, even though we cannot know if this is a false positive

case given by the unification. We take into account this issue but we continue

with the work using the clics form column as reference for the colexification de-

tection 3. This is a common trade-off when doing large scale computational work:

the amount of data is bigger but the data is more noisy being collected by vari-

ous sources. The grouping of different single databases also explains why we do

not have all the entries for all the rows in the table (among others, Latitude and

Longitude show a big amount of missing entries).

The number of unique entries between variety and Glottocode columns is dif-

ferent because of the way the two values are conceived. The variety is an easily

readable way to define a language (e.g. Italian), while the glottocode is a unique

code identifier that refers to that language using the Glottolog standard [Ham-

marstrom et al., 2020] (e.g. ital1282).

Since there is no perfect definition of what a language is, we are using the state

of the art (Glottolog) as our best approximation. This means that sometimes the

variety column assigns different names to the same glottocode, given the fact that

there can be multiple names or super/sub classifications associated with the same

language. For instance, “Dammai Dibin” and “Dammai Rurang” both are asso-

ciated with miji1239. This is likely because they are local variants that Glottolog

does not consider two distinct languages. In other cases, it is because languages

were written down in different ways across data sets, keeping in mind that the

CLICS data is an aggregation of multiple heterogeneous data sets. For example

“Latin” and “latin-std” both refer to lati1261. To summarize, we should use the

3Thanks to Lucı́a Pitarch Ballesteros for the issue detection.
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Glottocode column as the main reference for a language and use the variety column

only if we need to filter or search for human-readable strings.

Some columns contain null values, as shown in table 4.1. We can notice that

between the most important columns (which are clics form, Concepticon Gloss, va-

riety, Glottocode, Family), Family and Glottocode contains a big amount of null val-

ues (respectively 22 090 and 19 627).

Detaching from the table and looking deeper into the data, we notice that the

data frame does not contain duplicated rows.

Regarding the distribution of glottocodes per family, most families only have

few members, with a mean of 11 and a standard deviation of 42. This means that

only a few families attest a number of languages way bigger than the majority of

families. There are more than one family with only a single member, while the

largest family (Austronesian) has 395. The first percentile is 1, the second is 2,

and the third is 4. Figure 4.1 shows the distribution of languages per family.

Figure 4.1: Distribution of languages per family.

The distribution of concepts per family, instead, is the following: the smallest

family (Pahoturi) has 4 concepts while the largest (Indo-European) has 181 678,

with a mean of 6808. The standard deviation is 24 540, being the first percentile

201, the second 895 and the third 1776. This means that a huge amount of families

attest only a few concepts, while the biggest amount of concepts is attested in the

most studied linguistic families. This distribution is depicted in figure 4.2.

We noticed some entries from different diachronic varieties, for example, “An-
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Figure 4.2: Distribution of concepts per family.

cient Greek”, “Old Prussian”, “Middle Welsh”, “Modern Armenian”, plus the

classical language Latin. As we will see in the next section, these varieties will be

discarded. The numbers of rows that contain one of the diachronic keywords in

the variety column are shown in table 4.2.

Table 4.2: Count of diachronic varieties

Key word Number

Ancient 4164

Old 17566

Classical 663

Middle 6096

Modern 4256

Proto 2757

Gotic 1198

Latin 3621

908 Concepticon glosses contain multiword forms, parentheses or the disjunc-

tion “or”. This is the case of “HAIR (HEAD)”, “HOW MANY” and “BELOW OR

UNDER”. As we will see in the next section, these forms could create problems

in the following phases of work and need to be treated accordingly.

The code inspecting the data is in the file 01 DataUnderstanding.ipynb.

Table 4.3 shows as an example an entry of the data frame.
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Table 4.3: Example row of the CLICS data frame

dataset ID ids

Form ID 170-1-100-1

Form mondo

clics form mondo

gloss in source world

Concepticon ID 965

Concepticon Gloss WORLD

Ontological Category Person/Thing

Semantic Field The physical world

variety Italian

Glottocode ital1282

ISO639P3code ita

Macroarea Eurasia

Family Indo-European

Latitude 43.0464

Longitude 12.6489

4.3 Data Cleaning

As seen in the previous section, the data frame contains words from different

diachronic varieties. For consistency with the colexification definition (see section

3.1), we decided to discard entries of diachronic varieties, leaving only modern

languages. The entries whose variety contains the words Old, Middle, Classical,

Ancient, Proto, Gothic, as like Latin, will not be considered.

As anticipated, English is the meta-language used to express the concepts in

a uniform way, but it is also the language used to train the model and to base

our proxies of semantic similarity on. If we took into account English entries,

we would create a bias in the model, using the training language as a metric to

evaluate testing data. Therefore, we decided to not consider its rows as well,

deleting 9564 entries.

Accordingly, the first phase of the cleaning code consists of tokenizing the
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variety column to better identify the languages that contain the aforementioned

unwanted characteristics. The rows with these keywords have been flagged in a

new column and consequently deleted. The deleted rows are 40 417.

The Concepticon Gloss column contains all the glosses we will use in the fast-

Text model. This column contains multiword entries, e. g. “ALLOW OR PER-

MIT”, “BE ABLE”, “ANIMAL (CLASSIFIER)”. To understand whether to con-

sider or not these entries, we first checked how the fastText model worked. The

pre-trained model used a single-word segmented corpus [Grave et al., 2018]. This

could could lead us to think to not query it with multi-word glosses. On the con-

trary, the model do provide a specific function to obtain a single vector from a

line of text: get sentence vector() [Mohr, 2021a], [Facebook Research, 2019]. As

consequence, we can consider multi-word entries without incurring into errors.

Furthermore, if we call the single word function and the multi-word function

on the same word (get word vector() compared to get sentence vector()), the cosine

distance between the vectors obtained is 1.0, showing how the multi-word mech-

anism works exactly as the single-word one.

Another issue is that some parenthetical specifications, e.g., ”PLAY (VERB)”,

or entries containing OR, are not concept-related per-se. They account for more

than one concept or specify it too much, removing part of the meaning from the

concept. It is unclear how to interpret a vector derived from these surface forms.

Multi-word expressions, instead, provide the meaning of a single concept and

could be considered, in a way, a lack in the English language (given the fact that

one word is sufficient for the expression in other languages).

We expect the model to return random or unreasonable vectors for the first

two cases, and to work better for the latter. For this reason, the entries containing

OR or parenthesis have been deleted, removing 147 351 rows. This operation has

been done flagging each row that contained “OR ” or “(” and deleting them.

As we saw in the previous section, there are no null values in the Concepti-

con Gloss column, so we do not need to take counter measures.

Lastly, it is recommended to convert all uppercase into lowercase as a good

practice to normalize the text [Bhattacharjee, 2018], although the model works in

both cases. This is why we transformed every concepticon gloss in lowercase,
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saving the modified data frame in a CSV file.

The code of this phase is in the file 02 DataCleaning.ipynb.

After the data cleaning, the number of linguistic families we are working on

is 201, while the number of linguistic varieties is 2990 (check table 4.1 to see all

the values).

4.4 Data Preparation

4.4.1 Create colexification data frame

Now that we have a cleaned version of the data, we want to permutate all the con-

cepticons, obtaining a colexification data frame. To do so, we first select only the

relevant columns (clics form, Concepticon ID, Glottocode, Concepticon Gloss, Family,

variety), removing the duplicated rows and those that contained null values. The

number of rows in this data frame is 1 148 664.

This intermediate data frame was joined with itself through an inner join oper-

ation on the columns clics form, Glottocode, Family, variety. In this way we obtain a

data frame where, in a linguistic variety, a certain clics form has two concepticon

glosses, resulting in a colexification entry. The cases where the concepticons were

duplicated or permutated have been removed. The number of rows of this new

data frame is 124 187 for a total of 56 415 unique colexification word pairs. For

the record, the number of families we are working with has lowered to 181 with a

distribution of colexifications per family that reflects the previous ones (see figure

4.3).

The code performing this operation is in the file 03 CreateColex.ipynb.

Table 4.4 shows a line of the data frame as an example.
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Figure 4.3: Distribution of colexifications per family.

Table 4.4: Example row of the colexification data frame

clics form uomo

Concepticon ID.x 683

Glottocode ital1282

Concepticon Gloss.x person

Family Indo-European

variety Italian

Concepticon ID.y 1554

Concepticon Gloss.y man

4.4.2 Bootstrap

Citing J. L. Horowitz, “the bootstrap is a method for estimating the distribution

of an estimator or test statistic by resampling one’s data” [Horowitz, 2001, p.

3161]. It consists of sampling the data to create a bootstrapped data distribution

to apply all the computations on. The method is proven to reduce biases and

errors, approximating the original distribution.

In our case, we wanted to select a specific number of varieties for every lan-

guage family, creating a new colexifications data frame to base our calculus on.

The number we chose is the counting of varieties of a specific family, allowing a

replacement mechanism: each variety can be selected more than once.

To do the bootstrapping, we created a data frame with only Family and Glot-
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tocode columns, removing the duplicated rows. For every family, we chose n

random varieties, where n is the number of varieties available in that family, in

a replacement manner, creating a list of desired varieties. So for example, for

the family Mayan (which has two varieties whose glottocodes are: kekc1242 and

tzot1259), we will select two varieties, and the varieties selected can be repeated,

meaning that we could pick tzot1259 twice. Secondly, for every variety in the list,

we took all its colexifications and put them into another data frame.

Since we select all the colexifications for all the varieties considered, one can

ask if this is truly useful. Despite the fact that the amount of data considered is

completely comparable with the original one, after the bootstrap the data we are

going to work on has undergone a shuffling. If we repeat the process another

time, it is expected that the size will be almost unchanged, even though the con-

sidered observation may vary, consequently changing the calculated values (we

will examine this part in the next section). By implication, we are faking to have

more data than the available one, making the calculated values more reliable on

an average scale.

We decided to perform the bootstrap 100 times, obtaining 100 sample data

frames.

4.4.3 Calculating Probabilities

Every bootstrap returns a data frame of all the colexifications for the randomly

chosen varieties. From this data frame, we grouped depending on the linguistic

family and we counted the number of varieties that have the same specific colex-

ification. This number has been then divided by the total number of varieties

for that family, meaning, the maximum possible number of varieties in which

the colexification could appear. This gave us the probability of finding a specific

colexification within a family. The process balanced the data relative to the lan-

guage family: a family that has 1000 members contributes the same amount of

(weighted) information than one that only has 1 member.

Following the case of Mayan already used in the previous paragraph, when

the bootstrap takes the colexifications of both varieties, the pair (air, wind) colex-

ifies in both, resulting in 1 as a probability value. The pair (alone, only), instead,
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only colexifies in one of the varieties, thus the value is 0.5.

Subsequently, we grouped only depending on the colexification, summing up

all the probabilities and dividing by the total number of families, obtaining the

probability of finding a specific colexification among all the families. In this case,

if the value is 1 it means that all the families show that colexification, the lower

the value, the less attested that colexification is.

That is to say, with this process, we calculate a value that represents how prob-

able it is that a specific pair of words is attested as colexification in any of the

language families taken into account.

To summarize, for every bootstrapped data frame, we choose the varieties, we

take every colexification of those varieties, we calculate the probabilities and save

all the obtained probabilities in a list. Given that we repeat the steps for every

bootstrapped data frame, this procedure allows us to have 100 computations of

the probabilities (one per table).

Each cycle consisting of the bootstrap and the calculus of probabilities, lasted

approximately 1 minute and 40 seconds, with a total time of 2 hours and 48 min-

utes.

The code performing both the bootstrap and the calculus is in the file 04 BootstrapProbabilities.ipynb.

4.5 Getting cosine similarity values

For this first phase of work, we used the English pre-trained version of the fast-

Text model [Grave et al., 2018]. The model has been trained on Common Crawl

and Wikipedia using the hyper-parameters shown in table 4.5.

Table 4.5: Main hyper-parameters of the pre-trained fastText model.

Dimension 300

Epoch 1

Learning rate 0.05

Loss function skipgram negative sampling

min Count 5

Model CBOW

window size 5
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To compute the cosine similarity values, we load the colexifications data frame

and, row by row, obtain the vector of the two concept words using the model

function (get sentence vector); if one of the vectors does not exist, the default value

for the vector assigned is 0 and the word is listed in a file. The default value 0 is

a meaningless number used only to avoid code-breaking while keeping track of

the not computed vectors would help us in a debugging phase. We have to keep

in mind that the fastText model can manage out of vocabulary words, returning

a vector even for a word that was not in the corpus. This means that, ideally,

the described possibility never happens, but anyway, the aforementioned code

constitutes a sound mechanism to avoid any kind of error. When querying the

model with the vector, the only columns we care about are Concepticon Gloss x

and Concepticon Gloss y because they are the ones that convey the meaning in the

English language.

At this point, we calculate the cosine similarity using the two vectors and

applying the dot product definition: let a and b two vectors, θ their angle

cos(θ) =
a · b

||a|| · ||b|| (4.1)

Since our definition of cosine similarity depends on the dot product, the range

the cosine values can address is [-1; 1], given -1 as negative correlation (com-

pletely opposite vectors), 1 as positive correlation (identical vectors), and 0 as

lack of correlation [FEL, 2020].

For example, in the first row of the colexifications data frame, we take the two

concepts (gold, bamboo), obtain their vectors and calculate the cosine similarity

as the cosine between the vectors’ angle (value 0.25).

The code loading the model and calculating the cosine similarity values is in

the file 05 gettingCosines.ipynb.

4.6 Analyses

4.6.1 Study of the probabilities

To analyze the distribution of probabilities we grouped together all the results

obtained by the bootstraps, calculating the average probability for every colexifi-
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cation.

Overall, we consider 56 415 colexifications on the total 100 bootstrapped data

frames, with a mean of 40 980 colexifications per bootstrap.

The values of the probabilities among the colexifications are extremely low

for most of the pairs: the mean value is 1.5× 10−3 with a standard deviation of

5.4× 10−3. The minimum value is 2.1× 10−5 for the pair (dust, mosquito) while

the maximum is 0.19 for the pair (moon, month).

As we can see from figure 4.4, the values show a logarithmic distribution.

The majority of colexification has a low probability value, being only the 2.3% of

them to have a value higher than 0.01. This is expected. Colexification is an infre-

quent phenomenon. Consequently, frequency rates computed across languages

are very low. Notwithstanding, we can still see that some colexifications are much

more frequent than others, relatively speaking.

Figure 4.5 shows a histogram with the distribution of probabilities. Again, we

see a drastic split in the values: 99% of colexifications are between 0 and 0.0195,

while the remaining 1% covers the whole range of probabilities.

Figure 4.4: Distribution of probabilities. The red line is set at 1.

4.6.2 Study of the cosine similarity values

We then wanted to take into account the cosine similarity values obtained from

the pre-trained fastText model (see section 4.5).
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Figure 4.5: Histogram with the distribution of probabilities.

As mentioned, the cosine similarity range is [-1; 1], being -1 the relation be-

tween perfect opposite vectors, 0 a relation between vectors with no correlation,

and 1 two complete identical vectors. Specifically, in our case, the values of the

cosine similarity values range between -0.098 and 0.997, with very low negatively

correlated vectors.

The mean value in the data is 0.21 with a standard deviation of 0.14. The most

negatively correlated colexification is (launder, deaf) while the most positively cor-

related pair is (three days before now, four days before now).

Figure 4.6 represents the sigmoidal distribution of cosine similarity values,

showing that, considering the whole range that in our case is [-0.1; 1], the majority

of colexifications has a value below the median.

4.6.3 Study of the correlation between probability and cosine

similarity

The plot 4.7 instead, combine both the probability with the cosine similarity val-

ues, showing how the higher probability values have a cosine similarity that

ranges between 0.2 and 0.9, while the higher cosine values have very low prob-

abilities. As such, tables 4.6 and 4.7 shows the top five probabilities and cosine

similarity value pairs. To better understand why the higher cosine values are
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Figure 4.6: Distribution of cosine similarity values.

actually not frequently colexified, we have to remember the theory lying under

the colexification itself. If it is true that two similar meanings are easily conveyed

with a single word form, it is also true that meanings that are so similar that could

cause misunderstandings, are hardly a case of colexification (section 3.1). This is

exactly the case of pair of words with very high cosine similarity values.

Table 4.6: Top 5 probabilities values pairs

Pairs Probabilities Cosine similarity

moon, month 0.195 0.22

tree, wood 0.182 0.40

flesh, meat 0.171 0.50

grandson, granddaughter 0.169 0.86

dish, plate 0.164 0.49

Table 4.7: Top 5 cosine similarity values pairs

Pairs Probabilities Cosine similarity

three days before now, four days before now 5.1× 10−5 0.997

mother’s sister, father’s sister 0.05 0.989

mother’s brother, father’s brother 0.06 0.989

twenty four, twenty five 1.4× 10−4 0.986

north, south 0.02 0.978
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At a glance, we could say there is no correlation between the two variables. In

the following phases of work, we will use the cosine similarity values to predict

the probability ones (see section 4.7). We are going to use a single feature, derived

from something completely different, to predict a complex phenomenon. If the

two features do not even correlate, the difficulty of the task improves. Since the

variables do not show a Gaussian-like distribution, we cannot use covariance or

Pearson’s correlation to verify if there is correlation. Still we can calculate Spear-

man’s correlation, whose value is 0.138, in a range [-1; 1], confirming the previous

idea that between the two variables there is no strong correlation. By comparison,

Xu’s result of Spearman’s correlation was 0.22, which was considered as a high

value compared by the correlation obtained with other features (see 3.2.2).

Figure 4.7: Scatter plot of cosine similarity with probabilities values.

These analyses can be found in the file 06 AnalysisBootCosine.ipynb

4.7 Logistic Regression

Now that we have calculated the probabilities and the cosine similarity values for

every colexification, we will try to answer two questions:

• How well can the cosine similarity values help us in predicting whether two

words are colexified with high probability across different languages?

• How well can the cosine similarity values help us in predicting whether two

words are a colexification at all?

To answer the questions, we will apply a Logistic Regression model to the data.
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4.7.1 First version

In this first version of the Logistic Regression, we will try to predict the most

probable colexifications.

To begin with, we load the first bootstrapped table and define a label for ev-

ery row: 1 for the highly probable colexifications, 0 for the rest. But how much is

“highly probable”? If we look back at the section 4.6.1, we see that only roughly

2% of the colexifications have a probability value higher than 0.01. For this rea-

son, the top 2% has been labeled with value 1, defining this amount as highly

probable.

At this point, we load the Logistic Regression model from scikit learn [Pe-

dregosa et al., 2011], setting the test size at 0.2. The data the model relies on are

only the cosine similarity values and the boolean labels. After the training, the

accuracy we obtain in the test data is 0.98, which could be considered a great re-

sult! However, if we look at the classification report, shown in table 4.8, we see

that the model is having a great response just because it is assigning 0 to the ma-

jority of pairs. This usually happens in an unbalanced situation, where a model

generalizes the problem, putting the most attested label to almost all the entries.

As consequence, the obtained result is meaningless, and we can avoid repeat-

ing the process for the other bootstrapped tables, opting for another approach

that will be laid out in the following section.

Table 4.8: Classification report for first version of Logistic Regression.

Label Precision Recall F1-score Support

0 0.98 1.00 0.99 8567

1 0.00 0.00 0.00 183

4.7.2 Second version

In the previous section, the problem we encountered dealt with an unbalance

in the data. To solve the situation, once we set the top 2% of highly probable

colexifications, we need to take roughly the same amount of entries for the not

highly probable ones.

This time, the obtained accuracy is 0.78 (which is still a good result!), with a

classification report as the one of table 4.9.
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Table 4.9: Classification report for second version of Logistic Regression.

Label Precision Recall F1-score Support

0 0.79 0.78 0.78 179

1 0.77 0.78 0.77 171

We can consider the procedure as sound, and run the code on large scale,

meaning on every bootstrapped sample setting 10 different random states 4.

Of course, the quantity of entries we use in the model is quite small, because

of the balancing operation. A way to consider a bigger quantity of colexifications

is defined in the following version.

4.7.3 Third version

As seen previously, the amount of colexification used by the logistic regression

model is quite small. A solution to this could be changing the percentage of

highly probable colexifications, but this operation could be misleading because

in that way we will not have true high probable entries. Another resolution could

be to change the whole question the model is trying to answer. As such, instead

of finding the most probable colexifications using the cosine similarity, we want

to use the logistic regression model to identify whether a pair of words is a colex-

ification at all.

To do this, we set all the colexifications’ labels as 1, meaning that the word

pairs are real colexification; and we create random word pairs to be set as 0. The

latter will be created from the existing list of colexifications, randomly picking

pair of words and checking whether they are attested as colexifications. In the

case the pair is not attested, it cannot be considered a colexification and labeled

as 0.

Obviously, we need to keep the data balanced, to avoid incurring in the error

of the first version. For this reason, we will create as much unattested colexifica-

tion as attested ones.

4Setting a random state allows us to obtain always the same results when the number does not

change.
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The accuracy we obtain for this task is 0.64, with a classification report detailed

in table 4.10.

Table 4.10: Classification report for third version of Logistic Regression.

Label Precision Recall F1-score Support

0 0.62 0.70 0.66 8734

1 0.66 0.57 0.61 8678

Again, we consider the values as valid, and we perform the operation on ev-

ery bootstrapped table, setting 10 different random states as we did for the previ-

ous version.

The code that implements this section is in file 07 LogisticRegression 3ver.ipynb

and 08 LogReg 100pretr.ipynb.

4.8 Discussion of the results

In this phase of work, we decided to consider only the F1 score value, since this

number easily sums up both precision and recall (see section 3.4.3).

The results obtained from the 100 bootstrappings are almost unchanged through

the tables. For the second version, which balanced the data with an equal number

of 1 and 0 labels, the standard deviation is 0.02, with a mean value of 0.80. On

the other hand, in the third version, where we created unattested colexifications,

the standard deviation is 0.006 and the mean is 0.63. In both cases, the value is

far from the random baseline, set at 0.5 given the two possibilities in the labels.

As previously described (section 4.7.1), the first version was not performed on all

the bootstrapped tables to avoid incurring in a bias in the model.

The mechanism of bootstrapping allowed us to see how much the values

could change considering different re-samplings of data. We noticed a nearly

null variation, meaning that the model is robust to changes in the input.

We can then consider the results a success and a confirmation of the initial

assumption: the distributional similarity between two words helps in predicting

whether a pair can (with a high probability) be a colexification. Moreover, we

noticed that the logistic regression model was able to grasp some aspects of the

data that were invisible from our initial correlation tests. In section 4.6.3 we stated
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that we would hardly have success in the prediction given the lack of correlation

between the variables, indeed, we were wrong.

Table 4.11 summarizes the results.

Table 4.11: Result of the Logistic Regression on the two versions, averaged between 100 stratified boot-

straps.

Task Average F1-score Standard Deviation

high probability 0.80 0.02

is colexification 0.63 0.006
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Chapter 5

Training models

We saw in the previous chapter how we collected and manipulated the data to apply the

pre-trained fastText and Logistic Regression models.

In this chapter, we will introduce some modifications to the process explained above.

We will prepare a training corpus and train our own fastText models, changing the value

of window size.

The chapter will start with the collection and management of the training data: section

5.1 will explain how we obtained the data to train the model, how we cleaned it obtaining

various files, and how we joined those files. Section 5.2 will take care of the models’

training to end with section 5.3 that will discuss the obtained results.

5.1 Training corpus

In this phase of work, we want to train our own fastText models. To do so, the

starting point is to collect a training corpus.

5.1.1 Downloading the corpus

We decided to use the English Wikipedia as a training corpus, given its dimen-

sion, linguistic reliability, and availability to the public. The first step is to down-

load a Wikimedia dump 1.

The code that performs the download operation was adapted from the fast-

1Wikimedia downloads: https://dumps.wikimedia.org/
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Text’s GitHub repository 2. The bash file performs the first cleaning phase of

the Wikimedia dump, removing tables, converting links and performing a brief

normalization on the text.

The downloaded file is called enwiki-latest-pages-articles.xml.bz2, and has a size

of 17 GB. The Wikimedia organization periodically updates its dump files, allow-

ing people to get the most up-to-date corpus, but unfortunately, they do not label

the files with a version number. To specify which dump we worked on, we can

only say the download was performed on 19 April 2021 3.

5.1.2 Cleaning the corpus

From the first code, we obtained a zipped version of the English Wikipedia dump.

To unzip the file, we used the WikiExtractor module [Attardi, 2015] which creates

various text files of fixed size (in our case, we opted for 1 GB). Each extracted file

has the following format: contains various articles in an XML structure bounded

by a doc tag containing id, URL and title of the article. The XML element contains

the article in plain text, maintaining upper and lower cases, having the first line

as the title of the article [Attardi, 2021].

Afterward, every file has been cleaned removing the XML doc tags, putting ev-

erything lowercase, and removing URLs, multiple spaces and punctuation. The

file that performs this operation is cleaning wiki.py. Lowering the words, remov-

ing consecutive spaces and punctuation were not mandatory but recommended

steps [Bhattacharjee, 2018, p. 62].

An option for the cleaning could have been to remove also stop words, but

looking at the colexifications’ list, we noticed that some concepts appeared in the

stop words list. Therefore, removing stop words from the corpus would mistak-

enly compromise the training. As regards numbers, no actions were taken, given

that numbers would probably not influence the training 4.

2FastText’s Github repository: https://github.com/facebookresearch/fastText/

blob/master/get-wikimedia.sh
3Visit https://dumps.wikimedia.org/enwiki/latest/ for a complete list of the most

updated English dumps
4For some suggestions in the text pre-processing check: https://stackoverflow.com/

questions/62244474/text-preprocessing-for-text-classification-using-fasttext
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The cleaned files have been joined together in a single corpus file of size 13

GB through a concatenation.

5.2 Training the models

5.2.1 Choosing the architecture

Now that the corpus is ready, we need to understand which model to use for

training: CBOW or Skip-gram. We decided to be pragmatic training two versions

of the model with the following command:

fasttext MODEL -input corpus wiki -output result/standard model

where MODEL is either CBOW or Skip-gram, corpus wiki is the training cor-

pus and standard model is the name we assign to the output model. The hyper-

parameters chosen for the training are the default ones, shown in table 5.1 [Face-

book Inc., 2020a].

Table 5.1: Default main hyper-parameters of the fastText model.

Dimension 100

Epoch 5

Learning rate 0.1

Loss function softmax

min Count 1

window size 5

The models we obtain have a size of 2.5 GB and took 31.5 and 44.5 hours for

training, respectively for the CBOW and the Skip-gram models.

To choose the best model, we used them both to get the cosine similarity val-

ues. Subsequently, we used the cosine similarity values in the Logistic Regression

model. The average F1 scores of the two models are in table 5.2. As we can see,

the best results were obtained using the Skip-gram model.
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Table 5.2: Results of the trained fastText models.

Model Task Average F1-score

CBOW high probability 0.723

Skip-gram high probability 0.747

CBOW is colexification 0.576

Skip-gram is colexification 0.604

Comparing the tables 4.5 and 5.1, we see that the hyper-parameters used by

the models are different. Moreover, knowing that even the training corpus is

different, it is clear that we cannot compare the results obtained by the pre-trained

and trained models. As a matter of fact, the results obtained by the pre-trained

model are higher with respect to the ones we got with our model. It is clear that

the bigger dimension of the training corpus, combined with a different setting

in the hyper-parameters, has improved the model performances. Nevertheless,

we decided to use the default values of the hyper-parameters for the following

phases of work. As consequence, the results obtained from the trained model will

be treated as our baseline for future analysis. Lastly, since the Skip-gram model

performed better than the CBOW, we will use the former.

5.2.2 Changing window size

The next steps consist of training other models changing the parameter of win-

dow size and keeping the other hyper-parameter as default. Due to the time

consumption for the training phase, we opted for training the models on a small

section of the corpus. If it is true that the bigger the training corpus is, the higher

the performances are, it is also expected that the results we obtain when chang-

ing the window size are completely comparable through the models once fixed

a predefined training corpus common for every model. Furthermore, it has been

proven that fastText model is robust to small training corpus (see section 2.5).

This choice speeds up the process, reduces the memory usage and increases the

reproducibility of the work. The size chosen for the training corpus is 1 GB, ob-

tained from the first part of the whole corpus we managed previously (section

5.1).
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We trained the models with different window sizes: 1, 2, 3, 5, 7, 10, 20, 50.

When choosing the values, we thought it was interesting to see how the values

changed with very low window sizes (1, 2, 3), then we opted for the default one

(5), we moved on to bigger ones but keeping the values close to the default (7, 10)

and finally, we went to very wide ones (20, 50). The resulting models have a size

of approximately 1 GB. On every trained model, we ran the code explained in the

previous chapter obtaining the results listed in table 5.3. The code performing the

operations is in the file 10 LogReg models.ipynb.

Table 5.3: Results of the fastText models trained with different window sizes.

WS Hours training avg F1 high prob avg F1 is colex

1 2 0.751 0.587

2 2.5 0.754 0.594

3 3 0.753 0.598

5 4.5 0.745 0.598

7 5 0.741 0.594

10 6 0.738 0.594

20 10.5 0.726 0.593

50 16 0.707 0.594

5.3 Analysis of the results

The first aspect to analyze is the chosen architecture: Skip-gram. The Skip-gram

model took more time to train in comparison with the CBOW model. The reason

lies behind the number of operations Skip-gram has to run: for every word in the

context window, the model tries to predict the target word, check its performance

and correct it backward. On the contrary, with the CBOW approach, all the vec-

tors of the words in the context window are averaged together in a single vector

used as input data to obtain the target word. As result, if the window size is 3

the Skip-gram model has to repeat the operation 3 times, while the CBOW model

only 1, and if we change the window size to 7 the number of operations exe-

cuted by Skip-gram become 7, while remains stationary at 1 for CBOW. Luckily,

the extra time used by Skip-gram helps in obtaining higher performances [Mohr,

2021b].

81



This leads us to the second thing to notice: the amount of time necessary

for the training. The wider the window size, the higher the number of hours

necessary for the training. It is a logical consequence of the explained approach.

We then move to the analysis of the results. Through the 100 bootstrapped

tables, as previously noticed (section 4.8), the values keep a low standard devia-

tion, being stuck to a constant number across the iterations. Figures 5.1 and 5.2

depict how the values are spread.

Figure 5.1: Box plot of the results for the balanced version.

Figure 5.2: Box plot of the results for the unattested version.

As regards the query on whether the cosine similarity can help us in predict-

ing if two words are colexified with high probability across different languages,

the results are moderately higher with respect to whether the cosine similarity

values can help us in predicting if two words are a colexification at all. This

means that the first task was harder than the second, probably given the fact that

in the first step we split the pairs of words depending on their value. In doing so,

the hypothesis is that we separate concepts that are highly similar between them

to concepts which happen to be a colexification for reasons other than meaning
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similarity (e.g. culture or linguistic development). On the other hand, in the

second task, the set of positive examples is composed of pairs that may be both

highly correlated as well as just above an ideal threshold of correlation, making

the positive group impure.

In both cases, the results we obtained are above the random value (0.5 having

only two possibilities), allowing us to declare that the jobs were successful. The

values do not radically change through the columns, but we can observe how a

narrow window size has better effects on the logistic regression results. Specifi-

cally, for the task of labeling the high probable pairs, the best window size is 2,

with a result that is quite different respect to the wider window size (0.754 vs

0.707). As a general rule it looks like the wider the window size, the worst the

performance on this task. For the second task, which consist in labeling if a pair

could be a colexification at all, the window sizes 3 and 5 obtain the best results.

Through all the column, we do not see much difference in the results (0.598 for

the best, 0.587 for the worst). Interestingly, in this case the worst performance

was obtained by the most narrow window size (1). Doing a trade-off, we can say

that a window size of 3 gets the best results in both tasks.

Finally, comparing the best results of the models trained on 1 GB of text with

respect to the results of the model trained on 13 GB (0.753 and 0.598 for the small

vs 0.747 and 0.604 for the big), it isn’t worth the trouble. The enormous amount

of text taken into account has almost no improvement on the performances. It

should be recalled that the Skip-gram model has proven to works well with a

small amount of the training data [Kulshrestha, 2019]. Presumably, if we used the

CBOW model, the performances using only 1 GB of text would have been much

worst. In addition, this is one of the key features of fastText itself: even if we have

a small training corpus, the word embeddings do not improve proportionally to

the dimension.
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Chapter 6

Conclusions

In the thesis we investigated the linguistic knowledge acquired by word embed-

ding models.

As we discussed, finding ways to represent words in computational ways is

both a necessary and not straightforward task to do. There is the need to allow

algorithms to include semantic sensibility in the computation process to perform

a multiplicity of tasks, from sentiment analysis to semantic search. But, there is

no obvious best way to represent linguistic information. It is therefore important

to investigate the linguistic knowledge different computational methods acquire,

and how different parameters affect this outcome.

After an overview of the first methods to represent words and the study of

the three most widely and known word embeddings models (Word2vec, GloVe

and fastText), we decided to use the latter. It distinguishes from the others for

its capacity to build good word vectors for out-of-vocabulary or rare words, its

speed in training and its robustness towards the (small) size of the training data.

Given the impossibility to show the vectors without some kind of loss, and

realizing that we do not know the meaning of each vector dimension, we need to

test practically if the word embeddings have some sort of linguistic knowledge.

Accordingly, to inspect the knowledge gained by the model, we decided to test it

on a linguistic problem. We studied the past research of Xu et al. on colexification

[Xu et al., 2020a], and, based on that, we supposed word embeddings would have

been sensitive to that linguistic phenomenon. In this thesis, we used much more

and more diverse data than the study of Xu’s team (for example, the number
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of languages has increased from 246 to 2990). Through the whole process, we

dealt with the dataset collection, its understanding and its cleaning. The used

model was fastText, in its pre-trained version plus few different trained versions

depending on the window size. We looked at the influence that different window

sizes had on the effect of the predictions of a logistic regression model and we

could verify which kind of linguistic knowledge the model acquired.

To describe with more care the steps taken, we studied the phenomenon of

colexification, described as cases where, in a given language, two functionally

distinct senses can be associated with the same lexical form [François, 2008, p.

170]. Its origin, despite the fact of not being clear, is thought to rely on a seman-

tic connection between the two meanings [François, 2008, p. 172]. Given that

word embeddings allow us to calculate semantic closeness as the value of cosine

between the angles of their vector representations, obtaining the cosine similar-

ity values is precisely our first assignment. To solve it, we used the pre-trained

version of the fastText model.

We wanted the data to answer two questions:

• How well can the cosine similarity values help us in predicting whether two

meanings are highly colexified across different languages?

• How well can the cosine similarity values help us in predicting whether two

words are a colexification at all?

To be able to solve these questions, we used a logistic regression model. The

model was able to identify correctly the majority of queried word pairs as high

probable colexifications, or as colexifications at all. The obtained results are sat-

isfying: 0.80 on the first task and 0.63 on the second, with a baseline set at 0.50,

given the binary choice.

Subsequently, we also performed a phase of model training, changing the

value of the window size. This is considered to be one of the most important

hyper-parameters of the model, given the model’s architecture itself. The tested

sizes were 1, 2, 3, 5, 7, 10, 20, and 50, to be understood as symmetric number of

words before and after the target word.

Overall, for our purpose, we can say dimension 3 is the window size dimen-

sion that leads us to the best performances. This result aligns with the previous
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studies in the field, stating that a narrow window size is the best for paradigmatic

and lexical semantic tasks. Surprisingly, depending on the task, we had little or

almost no variation in the results. For the task of labeling the high probable pairs,

through the window sizes, the values changed in a range from 0.754 to 0.707. For

the second task, consisting in labeling if a pair could be a colexification at all,

apart from the window size 1 whose value is 0.587, the remaining values have a

variation of only 0.004.

These results show that the second task is a lot less sensitive to the window

size dimension, and more broadly, show that it is not always true that the window

size is an important parameter, contrary to claims of other studies [Sarkar and

Howard, 2019].

We can conclude the project was successful, showing that the word embed-

ding model, specifically fastText, is able to acquire semantic knowledge of the

embedded words. Furthermore, we discovered that, depending on the queried

task, there is window size invariance.

This work suggests that there is a difference between highly frequent (the top

2%) vs. the other colexifications. The results we obtained show that the former are

sensitive to the window size, while the latter are not. At present, it is unclear why

that is. A future development could involve an in-depth study of the difference

between highly and lower frequent colexifications.

A second point to inspect in future could be a systematic evaluation of linguis-

tic tasks in which window size does or does not matter. What do tasks in each

group have in common? The goal, again, would be to learn about the linguistic

knowledge acquired by word embeddings, as a function of window size but on a

more general level.

Another idea could be to use Language Models (e.g. BERT) for the analysis,

looking at how (and if) the results change. This would shed a light on the differ-

ences between the models.

Finally, there could be used not only English word embeddings but other lan-

guages to check the robustness of the results reported here.
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Appendix A

Differences between Xu et al. and

this project

Table A.1: Differences between Xu et al.’s project and present project

Factor Xu’s project Present project

Data base used IDS CLICS

Number of languages 246 2990

Use diachronical varieties Yes No

Type of concepts Single-word Multi-word*

Bootstrapping Yes Yes

Monte Carlo Yes No

Number of bootstraps 1000 100

NLP model Word2Vec FastText

Metric to evaluate Logistic Regression Accuracy F1 score

* We removed multi-word expressions containing “or” or parenthesis
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Appendix B

List of files available on GitHub

The following is a list of the files available in the GitHub repository of the project,

available at: https://github.com/sarabert96/Colexification 1

Main folder

• 00 DataCollection: writes a CSV with the data from CLICS3 (out df all raw.csv)

• 01 DataUnderstanding: inspect the CSV file

• 02 DataCleaning: remove diachronic varieties, multiword concepticons and

lowercase every concepticon (out df all ok.csv)

• 03 CreateColex: creates a dataframe of colexifications (out df colexifications.csv)

• 04 BootstrapProbabilities does a bootstrapping (100 cycles) and for every

cycle it calculates the probability of finding a specific colexification in any

of the families (out statistics time.txt, listBoot.txt)

• 05 gettingCosines: given the colexifications dataframe (out of 03), it returns

another dataframe with the calculation of cosine similarity between a pair

of concepts (a colexification). Uses the pre-trained version of FastText. (out

df colex cosines.csv)

• 06 AnalysisBootCosine: analyze the distribution of probabilities calculated

from the bootstrapped code, and the cosine values for every pair of that

bootstrapped cycle
1Last update 29/06/2021



• 07 LogisticRegression 3ver: 3 versions of application of Logistic Regression

on the output of only one cycle of the bootstrap

• 07b gettingCosines support: the file uses the FastText model to calculate

the cosine similarity values. Serves as a support for the file 07

• 08 LogReg 100pretr: apply the Logistic Regression model on every output

of the 100 cycles. Uses the pre-trained version of FastText. (out df logreg bal.csv,

df logreg un.csv)

• 09 AnalysisLRpT : analyze the results of the Logistic Regression of file 08

• 10 LogReg models: apply the Logistic Regression model on every output

of the 100 cycles with 8 different models.

• 11 ModelResults : analyze the results of the Logistic Regression applied

using the 8 different models

• HP FT: inspect the hyper-parameters of the pre-trained version of FastText

HPC folder

1. get wikimedia.sh: download Wikipedia dump (out bz2 file)

2. cleaning attardi.sh: cleans the Wikipedia dump using WikiExtractor func-

tion

3. cleaning.sh: for every output of the previous file, calls cleaning wiki.py

function

4. cleaning wiki.py: cleans the Wikipedia dump obtained by the WikiExtrac-

tor function, putting everything lowercase, removing links and punctuation

5. joining.sh: for every cleaned file in the folder, it appends it to the general

corpus file (out corpus wiki)

6. training ft.sh: code to train the FastText model using the outputted corpus

7. trainingFT models.sh: code to train the FastText model with different win-

dow sizes (NB uses a small version of the wikipedia corpus)
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8. log reg.sh: calls log reg model.py

9. log reg model.py: for every model trained, applies the Logistic Regression

model as seen in the notebook file 08 (out df logreg bal.csv, df logreg un.csv)
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